lunes, 3 de abril de 2017

PROPAGACIÓN DEL IMPULSO CARDÍACO

En condiciones fisiológicas, los impulsos generados en el nodo SA se propagan sin disminución alguna hasta que todas las células cardíacas son excitadas. A esta propiedad de las células cardíacas de responder o no con la excitación de todas sus células cuando se les estimula se denomina respuesta todo o nada. Desde el nodo SA la excitación difunde radialmente hacia la aurícula derecha a una velocidad de 0.3 m/s. Sin embargo, la conducción hacia la aurícula izquierda y el nodo AV se realiza a una mayor velocidad (1 m/s) a través de tres tractos internodales: 
a) el anterior, que sale de la zona izquierda del nodo SA, se bifurca en el haz de Bachmann, sigue la banda interauricular y se ramifica en la aurícula izquierda facilitando la contracción casi sincrónica de ambas aurículas, y en otra rama que discurre por debajo del tabique interauricular para contactar por la parte superior del nodo AV;
 b) el medial (haz de Wenckebach), que sale del borde posterolateral del nodo SA y pasa por detrás de la vena cava inferior hasta llegar al tabique interauricular, a través del cual contacta con el nodo AV; c) el posterior (haz de Thorel), que sale del margen posterior del nodo SA y sigue la cresta terminal, alcanzando el borde superior derecho del nodo AV. 
Al cabo de 30-50 ms, el impulso cardíaco alcanza el nodo AV, que se localiza en la pared septal de la aurícula derecha, justo por detrás de la inserción de la valva septal de la válvula tricúspide. La velocidad de conducción a través del nodo AV es muy lenta (0.01-0.05 m/s), como corresponde a células de menor tamaño que las musculares auriculares, que generan potenciales de acción Ca2+-dependientes y en las que las uniones estrechas son escasas (véase más adelante). De hecho, la conducción a través de esta pequeña estructura tarda 100-130 ms. Esta lenta propagación explica el intervalo PR del ECG y permite que la contracción auricular participe en el proceso de llenado ventricular antes de que los ventrículos se contraigan. Las aurículas se encuentran separadas de los ventrículos por una barrera fibrosa que impide el paso de impulsos entre ambas estructuras si no es a través del nodo AV. Sin embargo, en algunos pacientes existen tractos anatómicos (haz de Kent, haces de Mahaim proximal y distal, células aurículo-His de Brechenmacher) que permiten el paso de impulsos de aurículas a ventrículos y viceversa, dando lugar a anomalías de la conducción intracardíaca que genéricamente se denominan síndromes de preexcitación. Unos 160 ms después de comienzo de la onda P, el impulso pasa a las fibras de transición y, finalmente, al sistema de His-Purkinje, que presenta múltiples uniones estrechas y a través del cual el impulso se conduce rápidamente (2-4 m/s). El haz de His se bifurca en una rama derecha y varias izquierdas, que discurren a ambos lados del septo interventricular y acaban ramificándose en fibras de Purkinje, que son las que establecen contacto con la superficie endocárdica del músculo ventricular, a través 456 F I S I O L O G Í A D E L S I S T E M A C A R D I OVA S C U L A R del cual el impulso se conduce más lentamente (0.3-1 m/s). La rama derecha pasa por debajo de la valva septal de la válvula tricúspide, sigue por la banda moderadora y finaliza en el músculo papilar anterior, siendo la encargada de la activación del ventrículo derecho. La rama izquierda se subdivide en dos grandes fascículos:
a) el anterosuperior, que activa la porción superior del tabique interventricular y la porción anterolateral y superior de la pared libre del ventrículo izquierdo, y 
b) el posteroinferior, que acaba en el músculo papilar posterior y activa los dos tercios inferiores del tabique y la pared libre del ventrículo izquierdo.
 La activación ventricular se inicia en tres zonas del ventrículo izquierdo: la pared anterior paraseptal alta, el tercio medio del tabique interventricular, y el área paraseptal posterior. Desde aquí, el impulso difunde a la pared libre del ventrículo izquierdo, que se activa en casi su totalidad en 15-20 ms, con excepción de la zona posterobasal y del ápex, que se activan al cabo de 25-30 ms. La conducción desde la superficie endocárdica hasta la epicárdica requiere otros 30 ms. La activación del ventrículo derecho se inicia 5-15 ms después de la del izquierdo, siendo la primera zona en activarse la base del músculo papilar anterior, desde donde el impulso se propaga al tabique interventricular y a la pared libre. Las últimas zonas en activarse son el cono pulmonar y el área posterobasal del ventrículo derecho, que lo hacen 60-70 ms después del inicio de la activación septal. La rápida velocidad de conducción intraventricular (0.3- 4 m/s) tiene como función permitir que ambos ventrículos se contraigan de forma sincrónica en un corto espacio de tiempo, algo esencial para que el corazón realice la función de bomba de forma eficaz. En situaciones patológicas (postinfarto de miocardio), el impulso cardíaco se propaga más lentamente, lo que permite que los ventrículos se contraigan de forma asincrónica; esto se traduce en una disminución de los volúmenes sistólico y minuto cardíacos.

Acoplamiento eléctrico de las células cardíacas

Los miocitos cardíacos están unidos entre sí por los discos intercalares, que permiten el acoplamiento eléctrico, y por los desmosomas, uniones especializadas que facilitan el acoplamiento excitación-contracción. Estas uniones facilitan que el miocardio funcione como un sincitio funcional. El acoplamiento eléctrico célula-célula desempeña un papel fundamental en la sincronía y propagación de la actividad eléctrica cardíaca. Este acoplamiento se realiza a través de uniones de baja resistencia (1-3 cm2), es decir, casi 700 veces menor que la de la resistencia externa de la membrana, a las que se denomina “uniones estrechas” o gap junctions. A este nivel, la distancia entre las células es de tan sólo 30 nm, existiendo canales hidrofílicos de 10 nm de diámetro que conectan el citoplasma de dos células adyacentes y permiten el paso de moléculas neutras o cargadas negativamente con un peso molecular inferior a 1200 D. En condiciones fisiológicas, la resistencia longitudinal o intracelular, determinada por las uniones estrechas y el citoplasma, es mínima, lo que permite un acoplamiento célula-célula que facilita la propagación sincrónica del impulso cardíaco. La permeabilidad iónica a través de las uniones estrechas disminuye cuando aumenta la concentración de Ca2+ intracelular o disminuye el pH intracelular, cambios que tienen lugar durante la isquemia cardíaca. La probabilidad de apertura de los canales de las uniones estrechas disminuye en presencia de fármacos (digoxina, alcoholes o dinitrofenol, que inhibe la fosforilación oxidativa), hipoxia o soluciones hiperosmolares; todas estas situaciones producen un desacoplamiento célula-célula que disminuye, o incluso bloquea, la propagación del impulso cardíaco. En áreas de infarto, el cierre de estos canales impide el paso de corriente y de metabolitos hacia las células sanas adyacentes, limitando la extensión del área de necrosis. Por el contrario, los fármacos que aumentan la concentración intracelular del AMPc incrementan el acoplamiento celular y la velocidad de conducción intracardíaca. Las células de los nodos SA y AV presentan pocas uniones estrechas, lo que explicaría la lenta velocidad de conducción (0.02-0.05 m/s), así como la fácil aparición de bloqueos a nivel de estas estructuras. Por el contrario, las uniones estrechas son muy abundantes en las células del sistema de His-Purkinje, donde  la velocidad de conducción es muy rápida (1-4 m/s).

Características de la propagación del impulso cardíaco

La propagación del impulso cardíaco es un fenómeno complejo que depende no sólo del tipo, tamaño, orientación y geometría de las células cardíacas, sino también de las propiedades activas y pasivas de la membrana. Las propiedades activas están determinadas por los mecanismos iónicos dependientes de voltaje y tiempo, responsables de la génesis del potencial de acción cardíaco. Por otro lado, y dado que la conducción del impulso cardíaco se realiza mediante circuitos locales que fluyen desde una célula excitada hasta las vecinas que se encuentran en reposo, la propagación del impulso cardíaco dependerá también de los factores que determinan el potencial de reposo, el acoplamiento intercelular y las propiedades de cable de la membrana (resistencia y capacitancia), esto es, de las propiedades pasivas de la membrana. La membrana de la célula cardíaca se ha equiparado a un condensador y una resistencia colocados en paralelo. Un condensador, porque es un medio dieléctrico que separa dos medios conductores (los espacios extracelular e intracelular) y una resistencia, porque dispone de conductores especializados para el flujo iónico (los canales iónicos). En condiciones fisiológicas, el impulso generado en el nodo SA se propaga electrónicamente a las células auriculares vecinas que se encuentran en reposo y son excitables, desplazando su potencial de membrana hasta el potencial P ROPIEDADES ELÉCTRICAS DEL CORAZÓN 457 umbral. Cuando esto sucede, los canales de Na+ se activan y se produce una entrada masiva de Na+ en la célula, por lo que la porción de la membrana activada-despolarizada tendrá un Em más positivo que las zonas vecinas en reposo. Se establece así la fuerza electromotriz necesaria para el flujo de corriente a lo largo de la célula cardíaca, que desplazará electrotónicamente un nuevo segmento de la membrana hacia el potencial umbral; cuando esto sucede se genera un nuevo potencial de acción que a su vez despolarizará electrotónicamente las células vecinas hasta el potencial umbral produciendo un nuevo potencial de acción, y así sucesivamente. De esta forma el potencial de acción va despolarizando zonas adyacentes y se propaga a través del miocardio.
 El factor de seguridad es una medida de la capacidad del potencial de acción propagado para desplazar el potencial de membrana de la célula vecina hasta el potencial umbral, y con ello generar un nuevo potencial de acción, y asegurar así la propagación del impulso cardíaco. Cuanto mayor sea la amplitud de la INa generada durante el potencial de acción cardíaco, tanto mayor será el margen de seguridad para la propagación del impulso cardíaco. Por ello, el factor de seguridad es mayor en las células que presentan un potencial de membrana más electronegativo y generan potenciales de acción rápidos Na+-dependientes (p. ej., el sistema de His-Purkinje) que en aquellas que se encuentran parcialmente despolarizadas y generan potenciales de acción de menor amplitud (“rápidos deprimidos”) o potenciales de acción lentos. Los potenciales de acción “rápidos deprimidos” se generan en células cardíacas procedentes de zonas isquémicas o parcialmente despolarizadas (Em = -70 a –60 mV); en estas circunstancias, la fase 0 de rápida despolarización es debida a la activación de la INa, pero la magnitud de esta corriente es mucho menor que la que presentan las células cardíacas con un potencial de reposo normal. Tanto los potenciales de acción rápidos deprimidos como los potenciales de acción lentos carecen de la capacidad de despolarizar la membrana adyacente hasta el potencial umbral, por lo que se producirá una respuesta subumbral o local y la propagación del impulso cardíaco quedará bloqueada. Esto explica que aparezcan con relativa facilidad retrasos de la conducción e incluso bloqueos de la propagación del impulso cardíaco a nivel del nodo AV. Igualmente, en todas las circunstancias en las que la INa está parcialmente inhibida (potenciales de acción rápidos deprimidos), disminuye el margen de seguridad y aparecen con facilidad cuadros de bloqueo de la propagación del impulso cardíaco. Esto es lo que sucede en presencia de hiperpotasemia, cardiopatía isqué- mica o altas dosis de fármacos que bloquean la INa (antiarrítmicos del grupo I o anestésicos locales).


No hay comentarios:

Publicar un comentario

CONCIENCIA POR UN MÉXICO SIN COVID-19

 hoy quiero aprovechar este post para iniciar a hacer conciencia. desde el punto de vista médico, como estudiante de medicina a punto de ing...