lunes, 3 de abril de 2017

PROPAGACIÓN DEL IMPULSO CARDÍACO (segunda parte)

Propagación anisotrópica del impulso cardíaco

En la célula cardíaca la velocidad de conducción y el margen de seguridad para la propagación dependen no sólo de las propiedades activas y pasivas de la membrana, sino también de la geometría celular. El músculo cardíaco es anisotrópico, es decir, sus propiedades biofísicas y anatómicas varían según la dirección de sus fibras. De hecho, en condiciones en las que las propiedades activas de la membrana permanecen estables, la conducción en dirección paralela a la orientación de la fibra (longitudinal) es al menos 3-5 veces más rápida que en sentido perpendicular al eje de la célula cardíaca. Paradójicamente, en sentido longitudinal la rápida velocidad de conducción se asocia a un menor margen de seguridad de propagación, mientras que en sentido transversal, aunque la velocidad de conducción es lenta, el margen de seguridad para la propagación es mayor que en sentido longitudinal. Por tanto, y aunque la velocidad de conducción es más rápida en sentido longitudinal, al ser el factor de seguridad menor es posible observar que la conducción disminuye y se bloquea en sentido longitudinal, mientras que persiste en sentido transversal, en el que el margen de seguridad es mayor. La menor velocidad de conducción en sentido transversal ha sido explicada con base en una distribución anisotrópica de las uniones estrechas, de tal forma que en sentido longitudinal su número es mayor y su distribución homogénea, lo que permite un mayor acoplamiento entre dos células vecinas y una propagación continua del impulso cardíaco. En sentido transversal el número de uniones estrechas es más escaso y su distribución desigual, lo que conduce a un acoplamiento intercelular discontinuo.

Control vegetativo de la función cardíaca

 En el adulto normal, la frecuencia cardíaca en reposo es de unos 60-75 latidos/min, si bien este valor es más elevado en el feto (140-160 latidos/min) y en los niños y disminuye hasta los 40-45 latidos/min en deportistas muy entrenados. Aunque la iniciación del impulso cardíaco es miógena y se mantiene tras colocar el corazón en una solucion- 458 F I S I O L O G Í A D E L S I S T E M A C A R D I OVA S C U L A R.   Representación esquemática de la propagación del potencial de acción. En la parte superior se representa la propagación del potencial de acción y en la inferior los circuitos de corriente responsables de la misma. Las flechas indican la dirección del flujo de corriente y los puntos negros las uniones estrechas entre cada una de las células. ción fisiológica, el tono vegetativo ejerce una importante modulación tanto de la frecuencia como de la contractilidad cardíacas. La actividad automática del nodo SA está bajo control vegetativo, y en condiciones fisiológicas predomina el tono parasimpático-vagal. Control simpático. Los nervios simpáticos cardíacos se originan en los segmentos torácicos superiores (T1-T6) y en los dos últimos segmentos cervicales de la médula espinal, atraviesan los ganglios paravertebrales de la cadena simpática torácica y hacen sinapsis con neuronas posganglionares, fundamentalmente en los ganglios cervical medio y estrellado. Las fibras posganglionares simpáticas que de ellos parten se unen a las fibras parasimpáticas para formar el plexo cardíaco y se distribuyen de forma homogénea por todo el corazón. La noradrenalina liberada por estos nervios, así como la adrenalina circulante liberada desde la médula adrenal, estimula los receptores 1-adrenérgicos cardíacos, lo que se traduce en un aumento de la ICa e If , produciendo: 
1) un aumento de la inclinación de la fase 4 y de la frecuencia de disparo del nodo SA y de los marcapasos ectópicos, 
2) un incremento de la contractilidad y de la velocidad de relajación,
 3) un aumento de la excitabilidad y velocidad de conducción intracardíaca, y 
4) un acortamiento del período refractario y un aumento de la velocidad de conducción a través del nodo AV, facilitando el paso de los impulsos de la aurícula al ventrículo. 
Casi todas estas acciones son consecuencia del aumento de la ICa que las catecolaminas producen y pueden inhibirse tras la administración de antagonistas de los receptores -adrenérgicos. En situaciones en las que aumenta el tono simpático (estrés, ansiedad) la frecuencia cardíaca puede acelerarse hasta los 100 latidos/min, mientras que durante el ejercicio físico intenso puede alcanzar los 180 latidos/min. Control parasimpático. Las fibras parasimpáticas preganglionares cardíacas se originan en el núcleo dorsal del vago del bulbo raquídeo, viajan con el nervio vago y hacen sinapsis con las células ganglionares cardíacas que se localizan en la grasa epicárdica cerca de los nodos SA y AV. Las fibras posganglionares se localizan en la superficie epicárdica o en las paredes de la aurícula. Las fibras preganglionares del vago derecho inervan fundamentalmente la aurícula derecha y el nodo SA, mientras que las del vago izquierdo inervan el nodo AV; la inervación parasimpática de los ventrículos es escasa y su función no es bien conocida. La acetilcolina liberada desde los terminales nerviosos vagales estimula los receptores muscarínicos M2 localizados en la membrana de las células cardíacas y activa una corriente de salida de K+ [IK(Ach)] que hiperpolariza el Em y desplaza el potencial umbral hacia valores menos negativos; además, la acetilcolina inhibe la ICa, en particular, cuando esta corriente ha sido previamente activada por la estimulación simpática. Estas acciones explican por qué la acetilcolina: 1) hiperpolariza el potencial diastólico máximo y aplana la inclinación de la fase 4 en las células del nodo SA y de los marcapasos ectópicos supraventriculares, reduciendo su frecuencia de disparo. Tras la sección de ambos nervios vagos o la administración de atropina (fármaco que bloquea las acciones cardíacas de la acetilcolina), la frecuencia sinusal aumenta hasta 100 latidos/min, lo que indica que en reposo el nervio vago ejerce una acción inhibitoria sobre el nodo sinoauricular disminuyendo la frecuencia cardíaca. Igualmente, durante el sueño aumenta el tono vagal y la frecuencia cardíaca disminuye en unos 10-20 latidos/min. 2) Reduce la contractilidad auricular (muy poco la ventricular), 3) acorta la duración del potencial de acción y del período refractario de las fibras auriculares, y 4) prolonga el período refractario y disminuye la velocidad de conducción a través del nodo AV, facilitando la aparición de bloqueos de la conducción a este nivel. A diferencia de la estimulación simpática, cuyas acciones aparecen y desaparecen lentamente, las acciones de la acetilcolina aparecen de forma casi inmediata (latencia < 100 ms) y desaparecen muy rápidamente, ya que es hidrolizada casi de forma instantánea por la acetilcolinesterasa. Estas características explican porqué el tono parasimpático puede ejercer un control latido-a-latido de la frecuencia y de la conducción AV cardíacas. Control cerebral. Diversos núcleos talámicos e hipotalámicos (anteriores), así como la corteza cerebral (los lóbulos central y temporal, la corteza motora, promotora y orbitaria o la circunvolución del cíngulo) modifican la contractilidad y la frecuencia cardíacas, y reproducen las respuestas observadas durante el ejercicio físico o las fluctuaciones de la temperatura ambiente. Control reflejo de la frecuencia cardíaca. La frecuencia cardíaca puede modificarse por vía refleja en respuesta a cambios en la presión arterial, de las presiones intracardíacas o de la respiración. Los cambios agudos de la presión arterial modifican la actividad de los barorreceptores localizados en los senos carotídeos y el cayado aórtico, y producen cambios en la actividad simpática y vagal cardíaca que alteran la frecuencia cardíaca. Así, un aumento brusco de la presión arterial distiende y activa los barorreceptores que estimulan los centros cardioinhibidores, produciendo una reducción de la frecuencia y contractilidad cardíacas a través de un aumento del tono vagal y una inhibición del tono simpático; lo contrario sucede cuando la presión arterial disminuye. En 1915, Francis Bainbridge demostró que la infusión de sangre o de solución salina aumentaba las presiones venosa y de la aurícula derecha y la frecuencia cardíaca, incluso aunque la presión arterial no se modificara. Esta respuesta está mediada a través de la estimulación de receptores auriculares localizados alrededor de las desembocaduras de las venas cavas y pulmonares. Los impulsos aferentes se transmiten a través del vago hacia el centro cardioacelerador, lo que se traduce en un aumento del tono simpático que incrementa la frecuencia y contractilidad cardíacas y reduce la presión intraauricular. También se han descrito receptores en el endocardio ventricular, cuya estimulación reduce la frecuencia cardíaca y las resistencias vasculares periféricas. La frecuencia cardíaca oscila rítmicamente con la frecuencia respiratoria, de tal forma que aumenta durante la P ROPIEDADES ELÉCTRICAS DEL CORAZÓN 459 inspiración y disminuye durante la espiración. Estos cambios se asocian a un aumento del tono simpático y una inhibición del tono vagal durante la inspiración y a un aumento del tono vagal durante la espiración. Además, durante la inspiración la distensión de los pulmones estimula receptores pulmonares sensibles al estiramiento que aumentan por vía refleja la frecuencia cardíaca; por otro lado, disminuye la presión intratorácica y aumenta el retorno venoso a la aurícula derecha que se distiende, activando el reflejo de Bainbridge. Otros factores. La tiroxina, hormona liberada por la glándula tiroides, aumenta la frecuencia cardíaca y facilita las acciones cardíacas de las catecolaminas. Las alteraciones electrolíticas también pueden modificar la frecuencia cardíaca. Así, la hipopotasemia y la hipercalcemia aceleran la frecuencia cardíaca. El aumento del metabolismo (ejercicio físico) y de la temperatura corporal (fiebre) también aceleran la frecuencia cardíaca, mientras que el frío ejerce el efecto contrario. La frecuencia cardíaca también aumenta en presencia de ciertos fármacos (digoxina, agonistas -adrenérgicos, inhibidores de fosfodiesterasa 3) y en pacientes con insuficiencia cardíaca.

Alteraciones del automatismo normal

En condiciones fisiológicas, la frecuencia cardíaca es de 60-75 latidos/minuto, considerándose como taquicardia la frecuencia cardíaca superior a los 100 latidos/min y como bradicardia la inferior a 50 latidos/min. Dos son los mecanismos involucrados en la iniciación y/o mantenimiento de los trastornos del ritmo cardíaco: 
1) alteraciones en el lugar de formación del impulso cardíaco (alteraciones del automatismo) y/o
 2) alteraciones en la secuencia de activación del miocardio (alteraciones de la conducción o reentrada). Existen circunstancias en las que el marcapasos cardí- aco es un tejido distinto del nodo SA. Ello sucede cuando la frecuencia del nodo SA disminuye de forma importante (p. ej., en la enfermedad del nodo SA) o cuando los impulsos que de él parten se bloquean y no alcanzan el nodo AV o el sistema de His-Purkinje (bloqueo AV). En todas estas circunstancias desaparece el fenómeno de supresión por sobreestimulación que el nodo SA ejerce sobre los marcapasos subsidiarios, y aparecen los “latidos o ritmos de escape” nodales o idioventriculares, según que el latido se origine en el nodo AV o en el sistema de His-Purkinje, respectivamente. El aumento del tono vagal que aparece en pacientes con infarto de miocardio posterior deprime los nodos SA y AV, aumentando la incidencia de bradicardia y de bloqueo AV, efectos que a su vez facilitan la aparición de ritmos ventriculares automáticos. Cuando se suprime de forma brusca la actividad del nodo SA se desenmascaran los marcapasos ectópicos, pero es preciso que transcurran 5-30 s para que disparen de forma rítmica a una frecuencia inferior a la del nodo SA. Durante este período de tiempo los ventrículos no bombean sangre, por lo que el flujo cerebral disminuye de forma súbita y el enfermo pierde el conocimiento; a este cuadro se le denomina síndrome de Stokes-Adams. Otras veces lo que sucede es que la frecuencia de disparo de los marcapasos ectópicos supera la del nodo SA, por lo que aquellos pasan a actuar como marcapasos cardíacos. Ello sucede cuando aumenta el tono simpático (p. ej., en situaciones de estrés, ansiedad, miedo, feocromocitoma), tras la administración de fármacos cardioactivos (digoxina, inhibidores de las fosfodiesterasas), en presencia de alteraciones electrolíticas (hipopotasemia, hipercalcemia), en pacientes con cardiopatía isquémica, o tras la distensión de la pared cardíaca, hecho que tiene lugar en enfermos con insuficiencia cardíaca o con dilatación ventricular postinfarto de miocardio. 

Automatismo anormal

Todas las células cardíacas, incluidas las musculares auriculares y ventriculares, pueden generar actividad automática (automatismo anormal) cuando son despolarizadas hasta un Em comprendido entre –60 y –50 mV. A este nivel de potencial de membrana la INa se encuentra inactivada, por lo que la fase 0 de despolarización de estos potenciales de acción automáticos es debida a la activación de la ICa. La frecuencia de disparo de estos focos automá- ticos va a ser acentuada por todos aquellos fármacos que incrementan esta corriente iónica (p. ej., catecolaminas, metilxantinas) o por procesos patológicos (miocardiopatí- as, fibrosis, cardiopatía isquémica) que despolarizan el potencial de membrana, mientras que pueden suprimirse por los fármacos que bloquean la ICa (verapamilo, diltiazem, dihidropiridinas) y los antagonistas -adrenérgicos.

Actividad desencadenada

Otra forma de automatismo patológico se asocia a la aparición de despolarizaciones. que aparecen durante la fase 3 del potencial de acción, antes de que la célula se repolarice pospotenciales precoces) o durante la fase 4, una vez que la célula se ha repolarizado (pospotenciales tardíos). Si estas despolarizaciones alcanzan el potencial umbral podrán generar uno o más potenciales de acción propagados. Los pospotenciales precoces aparecen en presencia de bradicardia, hipopotasemia o cuando se prolonga excesivamente la duración del potencial de acción cardíaco (el intervalo QT del ECG), y son responsables de la aparición de taquicardias polimórficas ventriculares denominadas torsades de pointes. Estos pospotenciales son debidos a la activación de la ICa y se suprimen por acción de los bloqueantes de esta corriente iónica o los bloqueantes de los receptores -adrenérgicos, acortando la duración del potencial de acción, acelerando la frecuencia cardíaca con un marcapasos o administrando sales de Mg2+. Los pospotenciales tardíos aparecen cuando aumenta la frecuencia cardíaca o la concentración de 460 F I S I O L O G Í A D E L S I S T E M A C A R D I OVA S C U L A R Ca2+ intracelular (p. ej., intoxicación digitálica, catecolaminas, hipercalcemia, cardiopatía isquémica) y se atribuyen a la activación de una corriente transitoria de entrada posiblemente de Na+-Ca2+. Estos pospotenciales se suprimen por acción de fármacos antiarrítmicos que bloquean la INa (desplazan el potencial umbral a valores menos negativos, impidiendo que la despolarización alcance el potencial umbral), o mediante maniobras vagales. 

Alteraciones en la conducción: 

reentrada En condiciones normales, un impulso generado en el nodo SA muere tras la activación secuencial de las aurículas y los ventrículos, ya que queda rodeado por células que acaba de excitar y que se encuentran en fase de período refractario absoluto. La reentrada implica que un impulso no muere tras la activación completa del corazón, sino que persiste y es capaz de reexcitar dos o más veces al miocardio. Para que se pueda producir la reentrada del impulso éste debe conducirse lentamente alrededor de un obstáculo que no se excita y que puede ser anatómico o funcional. La conducción lenta permitirá que el impulso alcance el punto donde se inició su circulación cuando éste ya haya recuperado la excitabilidad. Así pues, para que exista reentrada es preciso que el tiempo que el impulso tarda en recorrer la vía exceda la duración del PR más largo del circuito. Por tanto, cualquier factor o fármaco que acorte la duración del período refractario (hipoxia, hiperpotasemia, catecolaminas, acetilcolina) y/o deprima la velocidad de conducción intracardíaca facilitará la aparición de arritmias por reentrada. La existencia de áreas de conducción lenta (nodo AV, tejidos isquémicos parcialmente despolarizados) que presentan un bajo margen de seguridad facilita la aparición de bloqueos en la propagación del impulso y crean las condiciones óptimas para la aparición de reentrada. Igualmente, las respuestas prematuras (extrasístoles) inducidas durante la fase 3 del potencial de acción cardíaco, al aparecer a niveles menos negativos de potencial de membrana, presentan una velocidad de conducción más lenta que también facilita la aparición de arritmias por reentrada. La reentrada parece ser el mecanismo responsable de la mayoría de las taquiarritmias (taquicardia, aleteo y fibrilación) humanas. La frecuencia auricular es inferior a 200 latidos/min en la taquicardia supraventricular, de 200-300 latidos/min en el aleteo y superior a esta cifra en la fibrilación auricular. Por el contrario, en el ventrículo la taquicardia implica la presencia de más de 6 latidos consecutivos de origen ventricular; la frecuencia de esta arritmia es muy variable, y pueda oscilar entre 140 y 180 latidos/min. Cuando se produce una completa desorganización de la actividad eléctrica ventricular hablamos de fibrilación. Durante la taquicardia o la fibrilación ventricular, la contracción de ambos ventrículos es asincrónica e irregular, produciéndose una marcada reducción del volumen minuto, lo que en el caso de la fibrilación ventricular puede conducir a la muerte del paciente en unos pocos segundos (muerte súbita). El tratamiento de este cuadro exige la cardioversión eléctrica del corazón, es decir, la aplicación de una descarga eléctrica de corriente continua a través de la pared torácica (10-200 W/s), que active todas las fibras cardíacas simultáneamente, volviéndolas refractarias. En estas condiciones, cesa toda estimulación cardíaca durante 3-4 s, al cabo de los cuales el nodo SA u otra estructura automática dirige el corazón.

PROPAGACIÓN DEL IMPULSO CARDÍACO

En condiciones fisiológicas, los impulsos generados en el nodo SA se propagan sin disminución alguna hasta que todas las células cardíacas son excitadas. A esta propiedad de las células cardíacas de responder o no con la excitación de todas sus células cuando se les estimula se denomina respuesta todo o nada. Desde el nodo SA la excitación difunde radialmente hacia la aurícula derecha a una velocidad de 0.3 m/s. Sin embargo, la conducción hacia la aurícula izquierda y el nodo AV se realiza a una mayor velocidad (1 m/s) a través de tres tractos internodales: 
a) el anterior, que sale de la zona izquierda del nodo SA, se bifurca en el haz de Bachmann, sigue la banda interauricular y se ramifica en la aurícula izquierda facilitando la contracción casi sincrónica de ambas aurículas, y en otra rama que discurre por debajo del tabique interauricular para contactar por la parte superior del nodo AV;
 b) el medial (haz de Wenckebach), que sale del borde posterolateral del nodo SA y pasa por detrás de la vena cava inferior hasta llegar al tabique interauricular, a través del cual contacta con el nodo AV; c) el posterior (haz de Thorel), que sale del margen posterior del nodo SA y sigue la cresta terminal, alcanzando el borde superior derecho del nodo AV. 
Al cabo de 30-50 ms, el impulso cardíaco alcanza el nodo AV, que se localiza en la pared septal de la aurícula derecha, justo por detrás de la inserción de la valva septal de la válvula tricúspide. La velocidad de conducción a través del nodo AV es muy lenta (0.01-0.05 m/s), como corresponde a células de menor tamaño que las musculares auriculares, que generan potenciales de acción Ca2+-dependientes y en las que las uniones estrechas son escasas (véase más adelante). De hecho, la conducción a través de esta pequeña estructura tarda 100-130 ms. Esta lenta propagación explica el intervalo PR del ECG y permite que la contracción auricular participe en el proceso de llenado ventricular antes de que los ventrículos se contraigan. Las aurículas se encuentran separadas de los ventrículos por una barrera fibrosa que impide el paso de impulsos entre ambas estructuras si no es a través del nodo AV. Sin embargo, en algunos pacientes existen tractos anatómicos (haz de Kent, haces de Mahaim proximal y distal, células aurículo-His de Brechenmacher) que permiten el paso de impulsos de aurículas a ventrículos y viceversa, dando lugar a anomalías de la conducción intracardíaca que genéricamente se denominan síndromes de preexcitación. Unos 160 ms después de comienzo de la onda P, el impulso pasa a las fibras de transición y, finalmente, al sistema de His-Purkinje, que presenta múltiples uniones estrechas y a través del cual el impulso se conduce rápidamente (2-4 m/s). El haz de His se bifurca en una rama derecha y varias izquierdas, que discurren a ambos lados del septo interventricular y acaban ramificándose en fibras de Purkinje, que son las que establecen contacto con la superficie endocárdica del músculo ventricular, a través 456 F I S I O L O G Í A D E L S I S T E M A C A R D I OVA S C U L A R del cual el impulso se conduce más lentamente (0.3-1 m/s). La rama derecha pasa por debajo de la valva septal de la válvula tricúspide, sigue por la banda moderadora y finaliza en el músculo papilar anterior, siendo la encargada de la activación del ventrículo derecho. La rama izquierda se subdivide en dos grandes fascículos:
a) el anterosuperior, que activa la porción superior del tabique interventricular y la porción anterolateral y superior de la pared libre del ventrículo izquierdo, y 
b) el posteroinferior, que acaba en el músculo papilar posterior y activa los dos tercios inferiores del tabique y la pared libre del ventrículo izquierdo.
 La activación ventricular se inicia en tres zonas del ventrículo izquierdo: la pared anterior paraseptal alta, el tercio medio del tabique interventricular, y el área paraseptal posterior. Desde aquí, el impulso difunde a la pared libre del ventrículo izquierdo, que se activa en casi su totalidad en 15-20 ms, con excepción de la zona posterobasal y del ápex, que se activan al cabo de 25-30 ms. La conducción desde la superficie endocárdica hasta la epicárdica requiere otros 30 ms. La activación del ventrículo derecho se inicia 5-15 ms después de la del izquierdo, siendo la primera zona en activarse la base del músculo papilar anterior, desde donde el impulso se propaga al tabique interventricular y a la pared libre. Las últimas zonas en activarse son el cono pulmonar y el área posterobasal del ventrículo derecho, que lo hacen 60-70 ms después del inicio de la activación septal. La rápida velocidad de conducción intraventricular (0.3- 4 m/s) tiene como función permitir que ambos ventrículos se contraigan de forma sincrónica en un corto espacio de tiempo, algo esencial para que el corazón realice la función de bomba de forma eficaz. En situaciones patológicas (postinfarto de miocardio), el impulso cardíaco se propaga más lentamente, lo que permite que los ventrículos se contraigan de forma asincrónica; esto se traduce en una disminución de los volúmenes sistólico y minuto cardíacos.

Acoplamiento eléctrico de las células cardíacas

Los miocitos cardíacos están unidos entre sí por los discos intercalares, que permiten el acoplamiento eléctrico, y por los desmosomas, uniones especializadas que facilitan el acoplamiento excitación-contracción. Estas uniones facilitan que el miocardio funcione como un sincitio funcional. El acoplamiento eléctrico célula-célula desempeña un papel fundamental en la sincronía y propagación de la actividad eléctrica cardíaca. Este acoplamiento se realiza a través de uniones de baja resistencia (1-3 cm2), es decir, casi 700 veces menor que la de la resistencia externa de la membrana, a las que se denomina “uniones estrechas” o gap junctions. A este nivel, la distancia entre las células es de tan sólo 30 nm, existiendo canales hidrofílicos de 10 nm de diámetro que conectan el citoplasma de dos células adyacentes y permiten el paso de moléculas neutras o cargadas negativamente con un peso molecular inferior a 1200 D. En condiciones fisiológicas, la resistencia longitudinal o intracelular, determinada por las uniones estrechas y el citoplasma, es mínima, lo que permite un acoplamiento célula-célula que facilita la propagación sincrónica del impulso cardíaco. La permeabilidad iónica a través de las uniones estrechas disminuye cuando aumenta la concentración de Ca2+ intracelular o disminuye el pH intracelular, cambios que tienen lugar durante la isquemia cardíaca. La probabilidad de apertura de los canales de las uniones estrechas disminuye en presencia de fármacos (digoxina, alcoholes o dinitrofenol, que inhibe la fosforilación oxidativa), hipoxia o soluciones hiperosmolares; todas estas situaciones producen un desacoplamiento célula-célula que disminuye, o incluso bloquea, la propagación del impulso cardíaco. En áreas de infarto, el cierre de estos canales impide el paso de corriente y de metabolitos hacia las células sanas adyacentes, limitando la extensión del área de necrosis. Por el contrario, los fármacos que aumentan la concentración intracelular del AMPc incrementan el acoplamiento celular y la velocidad de conducción intracardíaca. Las células de los nodos SA y AV presentan pocas uniones estrechas, lo que explicaría la lenta velocidad de conducción (0.02-0.05 m/s), así como la fácil aparición de bloqueos a nivel de estas estructuras. Por el contrario, las uniones estrechas son muy abundantes en las células del sistema de His-Purkinje, donde  la velocidad de conducción es muy rápida (1-4 m/s).

Características de la propagación del impulso cardíaco

La propagación del impulso cardíaco es un fenómeno complejo que depende no sólo del tipo, tamaño, orientación y geometría de las células cardíacas, sino también de las propiedades activas y pasivas de la membrana. Las propiedades activas están determinadas por los mecanismos iónicos dependientes de voltaje y tiempo, responsables de la génesis del potencial de acción cardíaco. Por otro lado, y dado que la conducción del impulso cardíaco se realiza mediante circuitos locales que fluyen desde una célula excitada hasta las vecinas que se encuentran en reposo, la propagación del impulso cardíaco dependerá también de los factores que determinan el potencial de reposo, el acoplamiento intercelular y las propiedades de cable de la membrana (resistencia y capacitancia), esto es, de las propiedades pasivas de la membrana. La membrana de la célula cardíaca se ha equiparado a un condensador y una resistencia colocados en paralelo. Un condensador, porque es un medio dieléctrico que separa dos medios conductores (los espacios extracelular e intracelular) y una resistencia, porque dispone de conductores especializados para el flujo iónico (los canales iónicos). En condiciones fisiológicas, el impulso generado en el nodo SA se propaga electrónicamente a las células auriculares vecinas que se encuentran en reposo y son excitables, desplazando su potencial de membrana hasta el potencial P ROPIEDADES ELÉCTRICAS DEL CORAZÓN 457 umbral. Cuando esto sucede, los canales de Na+ se activan y se produce una entrada masiva de Na+ en la célula, por lo que la porción de la membrana activada-despolarizada tendrá un Em más positivo que las zonas vecinas en reposo. Se establece así la fuerza electromotriz necesaria para el flujo de corriente a lo largo de la célula cardíaca, que desplazará electrotónicamente un nuevo segmento de la membrana hacia el potencial umbral; cuando esto sucede se genera un nuevo potencial de acción que a su vez despolarizará electrotónicamente las células vecinas hasta el potencial umbral produciendo un nuevo potencial de acción, y así sucesivamente. De esta forma el potencial de acción va despolarizando zonas adyacentes y se propaga a través del miocardio.
 El factor de seguridad es una medida de la capacidad del potencial de acción propagado para desplazar el potencial de membrana de la célula vecina hasta el potencial umbral, y con ello generar un nuevo potencial de acción, y asegurar así la propagación del impulso cardíaco. Cuanto mayor sea la amplitud de la INa generada durante el potencial de acción cardíaco, tanto mayor será el margen de seguridad para la propagación del impulso cardíaco. Por ello, el factor de seguridad es mayor en las células que presentan un potencial de membrana más electronegativo y generan potenciales de acción rápidos Na+-dependientes (p. ej., el sistema de His-Purkinje) que en aquellas que se encuentran parcialmente despolarizadas y generan potenciales de acción de menor amplitud (“rápidos deprimidos”) o potenciales de acción lentos. Los potenciales de acción “rápidos deprimidos” se generan en células cardíacas procedentes de zonas isquémicas o parcialmente despolarizadas (Em = -70 a –60 mV); en estas circunstancias, la fase 0 de rápida despolarización es debida a la activación de la INa, pero la magnitud de esta corriente es mucho menor que la que presentan las células cardíacas con un potencial de reposo normal. Tanto los potenciales de acción rápidos deprimidos como los potenciales de acción lentos carecen de la capacidad de despolarizar la membrana adyacente hasta el potencial umbral, por lo que se producirá una respuesta subumbral o local y la propagación del impulso cardíaco quedará bloqueada. Esto explica que aparezcan con relativa facilidad retrasos de la conducción e incluso bloqueos de la propagación del impulso cardíaco a nivel del nodo AV. Igualmente, en todas las circunstancias en las que la INa está parcialmente inhibida (potenciales de acción rápidos deprimidos), disminuye el margen de seguridad y aparecen con facilidad cuadros de bloqueo de la propagación del impulso cardíaco. Esto es lo que sucede en presencia de hiperpotasemia, cardiopatía isqué- mica o altas dosis de fármacos que bloquean la INa (antiarrítmicos del grupo I o anestésicos locales).


RELAJACIÓN CARDÍACA

La relajación es el conjunto de acontecimientos que tienen lugar en el músculo cardíaco para adoptar el estado precontráctil. Este es un proceso que implica: 
a) la reducción de la [Ca2+]i a nivel de las proteínas contráctiles hasta los niveles previos a la contracción (0.1 M). En estas circunstancias, el Ca2+ se disocia de la TnC, el complejo TnI-tropomiosina ocupa los puntos activos de la actina e inhibe el acoplamiento entre actina y miosina y se produce la relajación cardíaca. 
b) La fosforilación de la TnI, que facilita que el complejo TnI-tropomiosina ocupe los puntos activos en el filamento de actina. Estos dos mecanismos se ponen en marcha muy rápidamente durante la diástole y son responsables de la fase de relajación isovolumétrica del ciclo cardíaco. Además, la relajación depende de las dimensiones, el grosor y las propiedades elásticas de la cavidad ventricular, de tal forma que el ventrículo hipertrofiado de los pacientes hipertensos, o el fibrosado de los pacientes con un infarto de miocardio previo, se relaja más lentamente. Por último, la relajación depende de la carga, siendo tanto más lenta cuanto mayor sea la carga. Por tanto, en las sobrecargas de presión (hipertensión arterial, estenosis aórtica) la prolongación de la fase de eyección sistólica se acompaña de forma paralela de una relajación más lenta, y lo mismo sucede en la cardiopatía isquémica. La reducción de la [Ca2+]i a sus valores precontráctiles implica la activación de dos ATPasas Ca2+-dependientes (bombas de Ca2+), una localizada en la superficie del retículo sarcoplásmico (SERCA2b) y otra en la membrana celular y del intercambiador Na+/Ca2+. Es decir, a diferencia de la contracción, la relajación es un proceso activo que consume ATP. Ello explica por qué cuando existe un déficit energético y la utilización excede a la producción de energía en el miocardio (p. ej., en la isquemia cardíaca), las alteraciones de la relajación preceden a las de la contracción cardíaca. La SERCA2b (100 kD) transporta 2 Ca2+ por cada molécula de ATP hidrolizada desde el citosol hacia el interior del retículo sarcoplásmico, donde se fija a diversas proteínas (calsecuestrina, calreticulina, calbindina). La actividad de la SERCA2b está regulada por el fosfolamban; cuando éste se encuentra en su forma no fosforilada inhibe la actividad de la SERCA (disminuye su afinidad por el Ca2+), mientras que su fosforilación a nivel de los residuos de serina16 y treonina17, aumenta la actividad transportadora de Ca2+ de la SERCA. El fosfolamban es fosforilado por las proteínas quinasas A y G activadas, respectivamente, por la adenosina 5 -monofosfato (AMPc) y la guanosina 5 -monofosfato (GMPc). Por tanto, los fármacos que aumentan la concentración de AMPc (p. ej., catecolaminas, dobutamina, inhibidores de la fosfodiesterasa 3) fosforilan el fosfolamban, aumentan la velocidad a la que el Ca2+ se reincorpora en el retículo sarcoplásmico y aceleran la relajación cardíaca. La ATPasa de la membrana (135 kD) intercambia un Ca2+ intracelular por un H+ del medio extracelular por cada molécula de ATP hidrolizada, estimulándose su actividad por la calmodulina y la proteína quinasa C. El intercambiador Na+/Ca2+ (120 kD) es un sistema de transporte localizado en la membrana celular por el que tres iones Na+ entran en la célula y se intercambian por un ion Ca2+ que sale de la célula. Una característica del intercambiador es que cuando la célula cardíaca se sobrecarga de Na+, puede actuar de forma inversa, intercambiando 3 Na+ intracelulares por un Ca2+ extracelular, lo que aumenta la entrada de Ca2+, la [Ca2+]i y la contracción cardíaca. En otras palabras, el intercambiador Na+/Ca2+ puede aumentar o disminuir la [Ca2+]i , participando tanto en la contracción como en la relajación cardíaca. En pacientes con IC se observa una disminución de la contractilidad cardíaca que ha sido atribuida a una reducción en el flujo de entrada de Ca2+ desde el medio extracelular y en el aumento transitorio de la [Ca2+]i a nivel de los receptores de rianodina; ambas acciones, unidas a una menor sensibilidad de los receptores de rianodina por el Ca2+, se traduce en una menor liberación del Ca2+ allí almacenado y en una disminución de la [Ca2+]i a nivel de las proteínas contráctiles. En ocasiones también se observa una disminución en la velocidad de relajación cardíaca que se acompaña de un aumento mantenido de la [Ca2+]i a nivel de las proteínas contráctiles durante la diástole. Este aumento parece asociarse a una inhibición de la actividad de la SERCA2b y a un aumento de la forma no fosforilada del fosfolamban. 

ACOPLAMIENTO EXCITACIÓNCONTRACCIÓN CARDÍACA

El acoplamiento excitación-contracción es el proceso que asocia la despolarización de la membrana con el acortamiento de la célula cardíaca. La célula cardíaca empieza a contraerse unos milisegundos después del comienzo del potencial de acción y la respuesta contráctil persiste después de que el potencial de acción ha finalizado. Por tanto, la duración de la contracción viene determinada por la duración del potencial de acción (200 ms en la aurícula y 300-350 ms en el ventrículo). La contracción cardíaca. El principal determinante de este proceso es el aumento de la [Ca2+] i a nivel de las prote- ínas contráctiles. Este aumento podría deberse a la entrada de Ca2+ extracelular a través de la membrana y/o a la liberación de Ca2+ desde sus depósitos intracelulares, principalmente el RS. Las mitocondrias cardíacas también pueden almacenar y liberar Ca2+, pero este proceso es poco importante en condiciones fisiológicas. A diferencia del músculo liso y esquelético, el músculo cardíaco deja de contraerse al cabo de unos segundos cuando se perfunde con una solución carente de Ca2+, lo que indica que la entrada de Ca2+ desde el espacio extracelular es responsable del acoplamiento excitación-contracción cardíaco. En la célula cardíaca en reposo, la [Ca2+]i es de 0.1 mol/L, mientras que en el medio extracelular y en el retículo sarcoplásmico se alcanzan concentraciones 10 000 veces mayores (2.5 mmol/L); además, el interior de la célula cardíaca es electronegativo (entre -90 y-60 mV). Todo ello facilita la entrada de Ca2+ desde el espacio extracelular hacia el citosol a favor de un gradiente electroquí- mico. La entrada de Ca2+ a favor de su gradiente electroquímico tiene lugar fundamentalmente a través de canales de Ca2+ tipo-L, que se abren-activan durante la fase 2 o meseta del potencial de acción cardíaco y, en menor medida, a través del intercambiador Na+/Ca2+. Sin embargo, la cantidad de Ca2+ que penetra durante la sístole cardíaca (10-20 mol/latido) tan sólo representa un 10- 15% de la cantidad necesaria para producir la contracción máxima. A pesar de ello, esta entrada de Ca2+ produce un marcado aumento de la [Ca2+] a nivel de los receptores sensibles a rianodina (RyR2) localizados en la superficie del retículo sarcoplásmico, los activa e induce la liberación del Ca2+ allí almacenado. Es decir, los receptores de rianodina actúan como canales de Ca2+ que liberan el almacenado en el retículo sarcoplásmico hacia las proteínas contráctiles. El resultado es un aumento transitorio de la [Ca2+]i a nivel de las proteínas contráctiles en cantidad suficiente para generar la contracción rápida y coordinada de los sarcómeros cardíacos. Por tanto, el Ca2+ que penetra a través de los canales tipo-L genera la respuesta contráctil no de forma directa, sino indirecta, aumentando la liberación del Ca2+ almacenado en el RS. A este proceso se le denomina liberación de Ca2+ inducida por el Ca2+. Los canales de Ca2+ tipo-L se encuentran en todas las células cardíacas y se concentran a nivel de los túbulos T, particularmente en la zona en que éstos contactan con el retículo sarcoplásmico, y su alta conductancia (25 pS) indica que son la vía más importante de entrada de Ca2+ desde el medio extracelular. Están constituidos por 4 subunidades denominadas 1C, 2, y . La subunidad 1C (242 kD) contiene el poro iónico, los filtros de selectividad que permiten el paso de Ca2+ a su través, los mecanismos que regulan apertura y cierre del canal y los puntos de unión para los fármacos que bloquean la entrada de Ca2+ a través de estos canales (calcioantagonistas). Los receptores sensibles a rianodina se localizan en los puntos en los que los túbulos T contactan con el retículo sarcoplásmico y actúan como canales de Ca2+ que se activan por mediadores fisiológicos (Ca2+, proteínas quinasas A y C), rianodina y cafeína

Mecanismo de la contracción muscular

El músculo cardíaco es capaz de convertir directamente la energía química en la energía mecánica necesaria para generar fuerza o tensión. La fuente inmediata de energía para la contracción cardíaca es la adenosina 5’-trifosfato (ATP), que tras hidrolizarse se convierte en adenosina 5 -difosfato (ADP), fosfato inorgánico (Pi) y energía:

ATP + H2O → APD + Pi + H+ + energía

La contracción muscular implica la formación de múltiples enlaces cruzados entre la cabeza pesada de la miosina y el filamento fino de actina. La velocidad a la que el ATP se hidroliza por la ATPasa de la cabeza pesada de la miosina determina la frecuencia de formación de los enlaces cruzados y, por tanto, la velocidad de la contracción cardíaca. El ADP formado en la reacción anterior se fosforila a continuación tras unirse a la creatinafosfato (CF) para reponer los niveles celulares de ATP (3 mg/g de tejido), de tal forma que el contenido muscular de ATP se mantiene constante. A su vez, el ATP puede convertirse en su forma de reserva, la CF. La síntesis de ATP y CF se realiza casi en su totalidad a través de la fosforilación oxidativa (vía aeróbica).

Formación de enlaces cruzados

En reposo, la actividad ATP-asa de la miosina es mínima y la actina está recubierta por el complejo TnI-tropomiosina, lo que impide que los puntos activos de la actina puedan formar enlaces cruzados con la cabeza de la miosina (Fig. 32.8). Durante la sístole la [Ca2+]i aumenta hasta 1 mol/L, y este catión se une a la TnC produciendo en ella un cambio conformacional que disocia el complejo TnI-tropomiosina de la actina y deja libres las zonas activas de la actina. Ello permite la formación de enlaces cruzados entre la actina y la miosina y produce el deslizamiento progresivo de los filamentos de actina entre los de miosina, de tal forma que el intervalo entre las líneas Z se acorta. Además, la unión del Ca2+ a la TnC activa nuevos filamentos de actina capaces de unirse a la miosina y aumenta el número de enlaces cruzados activados y la respuesta contráctil generada. Por tanto, la interacción del Ca2+ con la TnT es el principal determinante del acoplamiento excitación-contracción del músculo cardíaco. La formación de enlaces cruzados entre la actina y la miosina se realiza en cinco pasos que se resumen en la Figura 32.7. En el primer paso (panel A) podemos ver como durante la sístole cardíaca el Ca2+ interactúa con la TnT y la hendidura de las cabezas pesadas de la miosina está completamente cerrada y unida fuertemente a la actina. En estas condiciones, la cavidad metabólicamente activa, que posee actividad ATPasa, está abierta. En una segunda fase (panel B), el complejo Mg2+-ATP entra en esta cavidad y se forma un complejo miosina-ATP, que facilita la apertura de la hendidura de las cabezas pesadas de la miosina y que la actina y la miosina se disocien; en este momento, el complejo miosina-TnI ocupa los puntos activos de la actina y se produce la relajación cardíaca. Es decir, el ATP facilita la disociación del complejo formado entre la actina y la miosina e induce la relajación cardíaca. En la tercera fase (panel C) se cierra la cavidad activa del ATP y la cabeza de miosina gira unos 45° adoptando la postura de “reposo”. Es entonces cuando la actividad ATPasa de la cabeza de la miosina produce la hidrólisis del ATP, formándose una molécula de ADP, que sigue unida a la cabeza de la miosina, y una molécula de Pi que se libera. En la cuarta fase (panel D), el complejo miosina-ADP interactúa con la actina en presencia de iones Mg2+ formándose el enlace cruzado entre ambos filamentos; previamente, el aumento de la [Ca2+]i a nivel de las proteínas contráctiles ha producido el cambio conformacional en la TnC y la disociación del complejo TnI-tropomiosina de los puntos activos de la actina, lo que permite la formación de enlaces cruzados entre la actina y la miosina. Finalmente, tiene lugar el “golpe de remo”, durante el cual la cabeza de miosina gira 45° y se produce el acortamiento del sarcómero en unos 10 nm (panel E). En este momento, la cavidad metabólicamente activa de la cabeza de miosina se reabre y el ADP es expulsado del mismo, por lo que una nueva molécula de ATP puede ocuparlo reiniciándose el proceso. En resumen, la formación de un enlace cruzado miosina-actina implica la hidrólisis de una molécula de ATP, de tal forma que cuantas más uniones cruzadas se formen entre ambas proteínas tanto mayor será el consumo de ATP y la fuerza contráctil generada. Además, el ATP facilita la disociación del complejo actina-miosina y la formación de enlaces cruzados.

Válvulas cardíacas

Para que los ventrículos puedan llenarse con sangre venosa a presiones bajas (0.6-1.1 kPa o 5-8 mm Hg) y posteriormente incrementar la presión intraventricular durante la sístole hasta valores que superen las presiones existentes en las arterias pulmonares (2-4 kD o 15-30 mm Hg) y en la raíz de la aorta (10.6 kPa u 80 mm Hg), es necesario que existan dos pares de válvulas que ocupen los orificios de entrada (válvulas auriculoventriculares) y de salida (válvulas semilunares) de los ventrículos. Estas válvulas se abren y cierran pasivamente y son unidireccionales, es decir, se abren cuando el gradiente de presión empuja la sangre hacia adelante y se cierran cuando la sangre se mueve en sentido retrógrado. Las válvulas auriculoventriculares (AV) permiten que la sangre fluya de las aurículas a los ventrículos. Están formadas por unas valvas de tejido conectivo flexible recubierto de endocardio, que se encuentran ancladas en los anillos fibrosos valvulares y se unen a los músculos papilares ventriculares que parten de la pared del ventrículo a través de unas prolongaciones fibrosas (cuerdas tendinosas) que se insertan en los márgenes libres y en la cara inferior de las válvulas AV. La válvula AV derecha presenta tres valvas (anterior, media o septal y posterior), por lo que se denomina tricúspide, mientras que la situada entre la aurícula izquierda y el ventrículo izquierdo, que presenta dos valvas (anterior o aórtica y posterior), se denomina bicúspide o mitral. La apertura y cierre de las válvulas AV está determinada por las diferencias de presión existentes entre las aurículas y los ventrículos a lo largo del ciclo cardíaco. Durante la diástole ventricular la presión auricular supera a la ventricular, por lo que las válvulas están abiertas, sus valvas caen hacia la cavidad ventricular y permiten el paso de sangre desde las aurículas a los ventrículos. Sin embargo, durante la sístole ventricular la presión ventricular supera la auricular, por lo que las válvulas se cierran y las cuerdas tendinosas de los músculos papilares se ponen en tensión, impidiendo la apertura de las valvas hacia la cavidad auricular y el flujo retrógrado de sangre desde los ventrículos a las aurículas. Las válvulas semilunares, pulmonar o derecha y aórtica o izquierda, presentan 3 valvas, una derecha, una izquierda y una posterior en el caso de la válvula aórtica, y una anterior, una derecha y una izquierda en el caso de la válvula pulmonar. Estas valvas poseen unos bordes algo engrosados, que se adaptan perfectamente entre sí cuando las válvulas están cerradas y, a diferencia de las valvas AV, no se insertan en un anillo fibroso, sino que lo hacen en el borde inferior de tres dilataciones (senos de Valsalva) situadas en el origen de la arteria pulmonar y de la aorta. Durante la sístole cardíaca la presión intraventricular supera la existente en las arterias pulmonar y en la aorta, por lo que ambas válvulas semilunares se abren permitiendo el paso rápido de sangre desde los ventrículos hacia las arterias. Por el contrario, durante la diástole, los ventrículos se relajan y la presión intraventricular disminuye por debajo de la de ambas arterias y las válvulas semilunares se cierran, impidiendo el flujo retrógrado de sangre arterial hacia los ventrículos. Las alteraciones de las válvulas cardíacas dan lugar a cuadros clínicos:
 a) estenosis, en los que las valvas se engruesan y calcifican, lo que disminuye el orificio a través del cual pasa la sangre y obliga a que el corazón tenga que generar más presión en la cámara que está por encima de la válvula estenosada para impulsar la sangre a través de la obstrucción; 
b) insuficiencia, cuando las válvulas no cierran completamente o el orificio valvular se dilata, permitiendo el flujo retrógrado de sangre (regurgitación) a su través.

ANATOMÍA MACROSCÓPICA DEL CORAZÓN

El corazón es un órgano muscular hueco, en forma de cono invertido, con el vértice dirigido hacia abajo, hacia adelante y hacia la izquierda, y la base hacia arriba, que se extiende entre la segunda costilla y el quinto espacio intercostal. Consta de cuatro cavidades o cámaras, las dos superiores denominadas aurículas y las dos inferiores ventrículos, que están separadas por los correspondientes septos, o tabiques interauricular e interventricular, que en condiciones normales impiden que se mezcle la sangre de los dos lados, derecho e izquierdo, del corazón. Entre las aurículas y los ventrículos se forma un surco auriculoventricular, por el que discurren las ramas de las arterias coronarias derecha e izquierda que irrigan el corazón. Las aurículas son cavidades que presentan una pared delgada y presiones bajas. Su función es almacenar la sangre que procede del territorio venoso sistémico (aurícula derecha) y pulmonar (aurícula izquierda) durante la sístole ventricular. La sangre llega a la aurícula derecha a través de 3 venas: la cava superior (que drena la sangre de la porción supradiafragmática), la cava inferior (drena la sangre infradiafragmática) y el seno coronario (drena la sangre del propio miocardio); la aurícula izquierda recibe la sangre procedente de los pulmones a través de las venas pulmonares. La sangre almacenada en las aurículas pasa de forma pasiva a los ventrículos durante la diástole ventricular una vez que se han abierto las válvulas auriculoventriculares, aunque la contracción auricular contribuye de forma activa en un 15% al llenado ventricular. Los ventrículos proveen la fuerza necesaria para bombear la sangre a través de la arteria pulmonar (ventrículo derecho) y de la aorta (ventrículo izquierdo), razón por la que sus paredes son mucho más gruesas que las de las aurículas. Dado que la sangre sólo fluye desde las zonas de presión alta a las de presión baja, para poder expulsar la sangre es necesario que la presión generada en los ventrículos supere la presión existente en las arterias. Aunque cada ventrículo bombea la misma cantidad de sangre, la circulación pulmonar es un circuito corto y de baja presión, mientras que la circulación sistémica es un circuito más largo que presenta una presión y una resistencia al flujo sanguíneo unas 5 veces mayor. Ello se traduce en que el trabajo que debe realizar el ventrículo izquierdo es 5-7 veces mayor que el realizado por el derecho, por lo que no resulta sorprendente que la pared muscular del ventrículo izquierdo sea más gruesa (8-12 mm) que la del ventrículo derecho (3-4 mm). La superficie interna de las válvulas y cámaras cardí- acas está recubierta por una capa de endotelio asentada sobre una fina capa de tejido conectivo denominada endocardio, que se continúa con el endotelio de las venas y arterias que desembocan o salen del corazón. Además, el corazón está rodeado por una cubierta fibrosa denominada pericardio, que impide la distensión excesiva de las cámaras cardíacas. El pericardio está formado por dos capas, una externa fibrosa (pericardio parietal), que protege y fija el corazón a las estructuras que lo rodean (esternón, diafragma, grandes vasos), y otra interna o pericardio visceral. A su vez, el pericardio visceral está formado por una hoja parietal, que recubre la superficie interna del pericardio fibroso y se dobla para continuar sobre la superficie externa (pericardio) del corazón. Entre ambas hojas queda la cavidad pericárdica, que contiene 40-50 mL de líquido pericárdico, el cual permite al corazón moverse libremente.

Control vegetativo de la función cardíaca

En el adulto normal, la frecuencia cardíaca en reposo es de unos 60-75 latidos/min, si bien este valor es más elevado en el feto (140-160 latidos/min) y en los niños y disminuye hasta los 40-45 latidos/min en deportistas muy entrenados. Aunque la iniciación del impulso cardíaco es miógena y se mantiene tras colocar el corazón en una solución fisiológica, el tono vegetativo ejerce una importante modulación tanto de la frecuencia como de la contractilidad cardíacas. La actividad automática del nodo SA está bajo control vegetativo, y en condiciones fisiológicas predomina el tono parasimpático-vagal. Control simpático. Los nervios simpáticos cardíacos se originan en los segmentos torácicos superiores (T1-T6) y en los dos últimos segmentos cervicales de la médula espinal, atraviesan los ganglios paravertebrales de la cadena simpática torácica y hacen sinapsis con neuronas posganglionares, fundamentalmente en los ganglios cervical medio y estrellado. Las fibras posganglionares simpáticas que de ellos parten se unen a las fibras parasimpáticas para formar el plexo cardíaco y se distribuyen de forma homogénea por todo el corazón. La noradrenalina liberada por estos nervios, así como la adrenalina circulante liberada desde la médula adrenal, estimula los receptores 1-adrenérgicos cardíacos, lo que se traduce en un aumento de la ICa e If , produciendo: 
1) un aumento de la inclinación de la fase 4 y de la frecuencia de disparo del nodo SA y de los marcapasos ectópicos, 
2) un incremento de la contractilidad y de la velocidad de relajación, 
3) un aumento de la excitabilidad y velocidad de conducción intracardíaca, y
 4) un acortamiento del período refractario y un aumento de la velocidad de conducción a través del nodo AV, facilitando el paso de los impulsos de la aurícula al ventrículo. Casi todas estas acciones son consecuencia del aumento de la ICa que las catecolaminas producen y pueden inhibirse tras la administración de antagonistas de los receptores -adrenérgicos. En situaciones en las que aumenta el tono simpático (estrés, ansiedad) la frecuencia cardíaca puede acelerarse hasta los 100 latidos/min, mientras que durante el ejercicio físico intenso puede alcanzar los 180 latidos/min. Control parasimpático. Las fibras parasimpáticas preganglionares cardíacas se originan en el núcleo dorsal del vago del bulbo raquídeo, viajan con el nervio vago y hacen sinapsis con las células ganglionares cardíacas que se localizan en la grasa epicárdica cerca de los nodos SA y AV. Las fibras posganglionares se localizan en la superficie epicárdica o en las paredes de la aurícula. Las fibras preganglionares del vago derecho inervan fundamentalmente la aurícula derecha y el nodo SA, mientras que las del vago izquierdo inervan el nodo AV; la inervación parasimpática de los ventrículos es escasa y su función no es bien conocida. La acetilcolina liberada desde los terminales nerviosos vagales estimula los receptores muscarínicos M2 localizados en la membrana de las células cardíacas y activa una corriente de salida de K+ [IK(Ach)] que hiperpolariza el Em y desplaza el potencial umbral hacia valores menos negativos; además, la acetilcolina inhibe la ICa, en particular, cuando esta corriente ha sido previamente activada por la estimulación simpática. Estas acciones explican por qué la acetilcolina: 1) hiperpolariza el potencial diastólico máximo y aplana la inclinación de la fase 4 en las células del nodo SA y de los marcapasos ectópicos supraventriculares, reduciendo su frecuencia de disparo. Tras la sección de ambos nervios vagos o la administración de atropina (fármaco que bloquea las acciones cardíacas de la acetilcolina), la frecuencia sinusal aumenta hasta 100 latidos/min, lo que indica que en reposo el nervio vago ejerce una acción inhibitoria sobre el nodo sinoauricular disminuyendo la frecuencia cardíaca. Igualmente, durante el sueño aumenta el tono vagal y la frecuencia cardíaca disminuye en unos 10-20 latidos/min. 2) Reduce la contractilidad auricular (muy poco la ventricular), 3) acorta la duración del potencial de acción y del período refractario de las fibras auriculares, y 4) prolonga el período refractario y disminuye la velocidad de conducción a través del nodo AV, facilitando la aparición de bloqueos de la conducción a este nivel. A diferencia de la estimulación simpática, cuyas acciones aparecen y desaparecen lentamente, las acciones de la acetilcolina aparecen de forma casi inmediata (latencia < 100 ms) y desaparecen muy rápidamente, ya que es hidrolizada casi de forma instantánea por la acetilcolinesterasa. Estas características explican porqué el tono parasimpático puede ejercer un control latido-a-latido de la frecuencia y de la conducción AV cardíacas. Control cerebral. Diversos núcleos talámicos e hipotalámicos (anteriores), así como la corteza cerebral (los lóbulos central y temporal, la corteza motora, promotora y orbitaria o la circunvolución del cíngulo) modifican la contractilidad y la frecuencia cardíacas, y reproducen las respuestas observadas durante el ejercicio físico o las fluctuaciones de la temperatura ambiente. Control reflejo de la frecuencia cardíaca. La frecuencia cardíaca puede modificarse por vía refleja en respuesta a cambios en la presión arterial, de las presiones intracardíacas o de la respiración. Los cambios agudos de la presión arterial modifican la actividad de los barorreceptores localizados en los senos carotídeos y el cayado aórtico, y producen cambios en la actividad simpática y vagal cardíaca que alteran la frecuencia cardíaca. Así, un aumento brusco de la presión arterial distiende y activa los barorreceptores que estimulan los centros cardioinhibidores, produciendo una reducción de la frecuencia y contractilidad cardíacas a través de un aumento del tono vagal y una inhibición del tono simpático; lo contrario sucede cuando la presión arterial disminuye. En 1915, Francis Bainbridge demostró que la infusión de sangre o de solución salina aumentaba las presiones venosa y de la aurícula derecha y la frecuencia cardíaca, incluso aunque la presión arterial no se modificara. Esta respuesta está mediada a través de la estimulación de receptores auriculares localizados alrededor de las desembocaduras de las venas cavas y pulmonares. Los impulsos aferentes se transmiten a través del vago hacia el centro cardioacelerador, lo que se traduce en un aumento del tono simpático que incrementa la frecuencia y contractilidad cardíacas y reduce la presión intraauricular. También se han descrito receptores en el endocardio ventricular, cuya estimulación reduce la frecuencia cardíaca y las resistencias vasculares periféricas. La frecuencia cardíaca oscila rítmicamente con la frecuencia respiratoria, de tal forma que aumenta durante la

 PROPIEDADES ELÉCTRICAS DEL CORAZÓN 459 inspiración y disminuye durante la espiración. Estos cambios se asocian a un aumento del tono simpático y una inhibición del tono vagal durante la inspiración y a un aumento del tono vagal durante la espiración. Además, durante la inspiración la distensión de los pulmones estimula receptores pulmonares sensibles al estiramiento que aumentan por vía refleja la frecuencia cardíaca; por otro lado, disminuye la presión intratorácica y aumenta el retorno venoso a la aurícula derecha que se distiende, activando el reflejo de Bainbridge. Otros factores. La tiroxina, hormona liberada por la glándula tiroides, aumenta la frecuencia cardíaca y facilita las acciones cardíacas de las catecolaminas. Las alteraciones electrolíticas también pueden modificar la frecuencia cardíaca. Así, la hipopotasemia y la hipercalcemia aceleran la frecuencia cardíaca. El aumento del metabolismo (ejercicio físico) y de la temperatura corporal (fiebre) también aceleran la frecuencia cardíaca, mientras que el frío ejerce el efecto contrario. La frecuencia cardíaca también aumenta en presencia de ciertos fármacos (digoxina, agonistas -adrenérgicos, inhibidores de fosfodiesterasa 3) y en pacientes con insuficiencia cardíaca. Alteraciones del automatismo normal En condiciones fisiológicas, la frecuencia cardíaca es de 60-75 latidos/minuto, considerándose como taquicardia la frecuencia cardíaca superior a los 100 latidos/min y como bradicardia la inferior a 50 latidos/min. Dos son los mecanismos involucrados en la iniciación y/o mantenimiento de los trastornos del ritmo cardíaco: 
1) alteraciones en el lugar de formación del impulso cardíaco (alteraciones del automatismo) y/o 
2) alteraciones en la secuencia de activación del miocardio (alteraciones de la conducción o reentrada). Existen circunstancias en las que el marcapasos cardí- aco es un tejido distinto del nodo SA. Ello sucede cuando la frecuencia del nodo SA disminuye de forma importante (p. ej., en la enfermedad del nodo SA) o cuando los impulsos que de él parten se bloquean y no alcanzan el nodo AV o el sistema de His-Purkinje (bloqueo AV). En todas estas circunstancias desaparece el fenómeno de supresión por sobreestimulación que el nodo SA ejerce sobre los marcapasos subsidiarios, y aparecen los “latidos o ritmos de escape” nodales o idioventriculares, según que el latido se origine en el nodo AV o en el sistema de His-Purkinje, respectivamente. El aumento del tono vagal que aparece en pacientes con infarto de miocardio posterior deprime los nodos SA y AV, aumentando la incidencia de bradicardia y de bloqueo AV, efectos que a su vez facilitan la aparición de ritmos ventriculares automáticos. Cuando se suprime de forma brusca la actividad del nodo SA se desenmascaran los marcapasos ectópicos, pero es preciso que transcurran 5-30 s para que disparen de forma rítmica a una frecuencia inferior a la del nodo SA. Durante este período de tiempo los ventrículos no bombean sangre, por lo que el flujo cerebral disminuye de forma súbita y el enfermo pierde el conocimiento; a este cuadro se le denomina síndrome de Stokes-Adams. Otras veces lo que sucede es que la frecuencia de disparo de los marcapasos ectópicos supera la del nodo SA, por lo que aquellos pasan a actuar como marcapasos cardíacos. Ello sucede cuando aumenta el tono simpático (p. ej., en situaciones de estrés, ansiedad, miedo, feocromocitoma), tras la administración de fármacos cardioactivos (digoxina, inhibidores de las fosfodiesterasas), en presencia de alteraciones electrolíticas (hipopotasemia, hipercalcemia), en pacientes con cardiopatía isquémica, o tras la distensión de la pared cardíaca, hecho que tiene lugar en enfermos con insuficiencia cardíaca o con dilatación ventricular postinfarto de miocardio. Automatismo anormal Todas las células cardíacas, incluidas las musculares auriculares y ventriculares, pueden generar actividad automática (automatismo anormal) cuando son despolarizadas hasta un Em comprendido entre –60 y –50 mV. A este nivel de potencial de membrana la INa se encuentra inactivada, por lo que la fase 0 de despolarización de estos potenciales de acción automáticos es debida a la activación de la ICa. La frecuencia de disparo de estos focos automá- ticos va a ser acentuada por todos aquellos fármacos que incrementan esta corriente iónica (p. ej., catecolaminas, metilxantinas) o por procesos patológicos (miocardiopatí- as, fibrosis, cardiopatía isquémica) que despolarizan el potencial de membrana, mientras que pueden suprimirse por los fármacos que bloquean la ICa (verapamilo, diltiazem, dihidropiridinas) y los antagonistas -adrenérgicos.

Acoplamiento eléctrico de las células cardíacas

Los miocitos cardíacos están unidos entre sí por los discos intercalares, que permiten el acoplamiento eléctrico, y por los desmosomas, uniones especializadas que facilitan el acoplamiento excitación-contracción. Estas uniones facilitan que el miocardio funcione como un sincitio funcional. El acoplamiento eléctrico célula-célula desempeña un papel fundamental en la sincronía y propagación de la actividad eléctrica cardíaca. Este acoplamiento se realiza a través de uniones de baja resistencia (1-3 cm2), es decir, casi 700 veces menor que la de la resistencia externa de la membrana, a las que se denomina “uniones estrechas” o gap junctions. A este nivel, la distancia entre las células es de tan sólo 30 nm, existiendo canales hidrofílicos de 10 nm de diámetro que conectan el citoplasma de dos células adyacentes y permiten el paso de moléculas neutras o cargadas negativamente con un peso molecular inferior a 1200 D. En condiciones fisiológicas, la resistencia longitudinal o intracelular, determinada por las uniones estrechas y el citoplasma, es mínima, lo que permite un acoplamiento célula-célula que facilita la propagación sincrónica del impulso cardíaco. La permeabilidad iónica a través de las uniones estrechas disminuye cuando aumenta la concentración de Ca2+ intracelular o disminuye el pH intracelular, cambios que tienen lugar durante la isquemia cardíaca. La probabilidad de apertura de los canales de las uniones estrechas disminuye en presencia de fármacos (digoxina, alcoholes o dinitrofenol, que inhibe la fosforilación oxidativa), hipoxia o soluciones hiperosmolares; todas estas situaciones producen un desacoplamiento célula-célula que disminuye, o incluso bloquea, la propagación del impulso cardíaco. En áreas de infarto, el cierre de estos canales impide el paso de corriente y de metabolitos hacia las células sanas adyacentes, limitando la extensión del área de necrosis. Por el contrario, los fármacos que aumentan la concentración intracelular del AMPc incrementan el acoplamiento celular y la velocidad de conducción intracardíaca. Las células de los nodos SA y AV presentan pocas uniones estrechas, lo que explicaría la lenta velocidad de conducción (0.02-0.05 m/s), así como la fácil aparición de bloqueos a nivel de estas estructuras. Por el contrario, las uniones estrechas son muy abundantes en las células del sistema de His-Purkinje, donde la velocidad de conducción es muy rápida (1-4 m/s).

PROPAGACIÓN DEL IMPULSO CARDÍACO

En condiciones fisiológicas, los impulsos generados en el nodo SA se propagan sin disminución alguna hasta que todas las células cardíacas son excitadas . A esta propiedad de las células cardíacas de responder o no con la excitación de todas sus células cuando se les estimula se denomina respuesta todo o nada. Desde el nodo SA la excitación difunde radialmente hacia la aurícula derecha a una velocidad de 0.3 m/s. Sin embargo, la conducción hacia la aurícula izquierda y el nodo AV se realiza a una mayor velocidad (1 m/s) a través de tres tractos internodales: 
a) el anterior, que sale de la zona izquierda del nodo SA, se bifurca en el haz de Bachmann, sigue la banda interauricular y se ramifica en la aurícula izquierda facilitando la contracción casi sincrónica de ambas aurículas, y en otra rama que discurre por debajo del tabique interauricular para contactar por la parte superior del nodo AV; 
b) el medial (haz de Wenckebach), que sale del borde posterolateral del nodo SA y pasa por detrás de la vena cava inferior hasta llegar al tabique interauricular, a través del cual contacta con el nodo AV; c) el posterior (haz de Thorel), que sale del margen posterior del nodo SA y sigue la cresta terminal, alcanzando el borde superior derecho del nodo AV
. Al cabo de 30-50 ms, el impulso cardíaco alcanza el nodo AV, que se localiza en la pared septal de la aurícula derecha, justo por detrás de la inserción de la valva septal de la válvula tricúspide. La velocidad de conducción a través del nodo AV es muy lenta (0.01-0.05 m/s), como corresponde a células de menor tamaño que las musculares auriculares, que generan potenciales de acción Ca2+-dependientes y en las que las uniones estrechas son escasas (véase más adelante). De hecho, la conducción a través de esta pequeña estructura tarda 100-130 ms. Esta lenta propagación explica el intervalo PR del ECG y permite que la contracción auricular participe en el proceso de llenado ventricular antes de que los ventrículos se contraigan. Las aurículas se encuentran separadas de los ventrículos por una barrera fibrosa que impide el paso de impulsos entre ambas estructuras si no es a través del nodo AV. Sin embargo, en algunos pacientes existen tractos anatómicos (haz de Kent, haces de Mahaim proximal y distal, células aurículo-His de Brechenmacher) que permiten el paso de impulsos de aurículas a ventrículos y viceversa, dando lugar a anomalías de la conducción intracardíaca que genéricamente se denominan síndromes de preexcitación. Unos 160 ms después de comienzo de la onda P, el impulso pasa a las fibras de transición y, finalmente, al sistema de His-Purkinje, que presenta múltiples uniones estrechas y a través del cual el impulso se conduce rápidamente (2-4 m/s). El haz de His se bifurca en una rama derecha y varias izquierdas, que discurren a ambos lados del septo interventricular y acaban ramificándose en fibras de Purkinje, que son las que establecen contacto con la superficie endocárdica del músculo ventricular, a través del cual el impulso se conduce más lentamente (0.3-1 m/s). La rama derecha pasa por debajo de la valva septal de la válvula tricúspide, sigue por la banda moderadora y finaliza en el músculo papilar anterior, siendo la encargada de la activación del ventrículo derecho. La rama izquierda se subdivide en dos grandes fascículos: a) el anterosuperior, que activa la porción superior del tabique interventricular y la porción anterolateral y superior de la pared libre del ventrículo izquierdo, y b) el posteroinferior, que acaba en el músculo papilar posterior y activa los dos tercios inferiores del tabique y la pared libre del ventrículo izquierdo. La activación ventricular se inicia en tres zonas del ventrículo izquierdo: la pared anterior paraseptal alta, el tercio medio del tabique interventricular, y el área paraseptal posterior. Desde aquí, el impulso difunde a la pared libre del ventrículo izquierdo, que se activa en casi su totalidad en 15-20 ms, con excepción de la zona posterobasal y del ápex, que se activan al cabo de 25-30 ms. La conducción desde la superficie endocárdica hasta la epicárdica requiere otros 30 ms. La activación del ventrículo derecho se inicia 5-15 ms después de la del izquierdo, siendo la primera zona en activarse la base del músculo papilar anterior, desde donde el impulso se propaga al tabique interventricular y a la pared libre. Las últimas zonas en activarse son el cono pulmonar y el área posterobasal del ventrículo derecho, que lo hacen 60-70 ms después del inicio de la activación septal. La rápida velocidad de conducción intraventricular (0.3- 4 m/s) tiene como función permitir que ambos ventrículos se contraigan de forma sincrónica en un corto espacio de tiempo, algo esencial para que el corazón realice la función de bomba de forma eficaz. En situaciones patológicas (postinfarto de miocardio), el impulso cardíaco se propaga más lentamente, lo que permite que los ventrículos se contraigan de forma asincrónica; esto se traduce en una disminución de los volú- menes sistólico y minuto cardíacos.

REFRACTARIEDAD CARDIACA

Si aplicamos un estímulo al comienzo de la contracción, el corazón no genera una segunda respuesta contráctil, mientras que si el estímulo se aplica durante la diástole sí es posible inducir una respuesta contráctil. Es decir, la célula cardíaca que ha generado un potencial de acción es incapaz durante un cierto tiempo de generar un nuevo potencial de acción, independientemente de la intensidad del estímulo aplicado. A este período de tiempo se le denomina período refractario. En las células que generan potenciales de acción Na+- dependientes, el período refractario viene determinado por la cinética de reactivación de los canales de Na+ (Fig. 33.3B). Los canales de Na+ se activan durante la fase 0, pero se inactiva al cabo de 0.5-2 ms. Los canales que se encuentran en estado inactivo no permiten la entrada de Na+ y permanecen en este estado hasta el comienzo de la fase 3 del potencial de acción, cuando el potencial de membrana alcanza valores negativos a –50 mV. Si representamos la magnitud de la corriente de Na+ frente al nivel de membrana al que se genera el potencial de acción cardíaco, podemos construir la denominada curva de inactivación de los canales de Na+ (Fig. 33.3A). En ella podemos observar que la INa alcanza valores máximos a –90 mV y disminuye gradualmente al despolarizar la membrana, de tal forma que cuando el Em alcanza valores -60 mV los canales se encuentran totalmente inactivados y no es posible generar INa. Es decir, la despolarización del Em inactiva los canales de Na+ y los hace no conductores. Como consecuencia, las células cardíacas que generan potenciales de acción Na+-dependientes no podrán generar una nueva respuesta propagada hasta que el Em no se haya repolarizado hasta valores más negativos a -60 mV (Fig. 33.3B). Este período de tiempo en el cual la célula no es capaz de generar un potencial de acción propagado en respuesta a un estímulo supraumbral y permanece inexcitable recibe el nombre de período refractario absoluto. A medida que la célula se repolariza entre –60 y –90 mV, los canales de Na+ se reactivan paulatinamente, es decir, pasan del estado inactivo al de reposo, desde donde pueden volver a activarse-abrirse; por lo tanto, al final de la repolarización la INa disponible aumenta y la excitabilidad se recupera de forma progresiva. Así, a medida que la célula se repolariza, existe un período de tiempo, denominado período refractario efectivo, durante el cual un estímulo supraumbral puede producir una respuesta local, pero no un potencial de acción propagado. El período refractario efectivo se sigue de otro período de tiempo durante el cual un estímulo ya es capaz de inducir un potencial de acción propagado. A este período se ledenomina período refractario relativo. Durante el perí- odo refractario relativo, los canales de Na+ aún no se han reactivado por completo, por lo que si en este momento se genera un potencial de acción prematuro, éste va a presentar menor amplitud y una duración más corta que los potenciales de acción generados cuando la célula se ha repolarizado por completo y recuperado su excitabilidad. Estos potenciales de acción prematuros se propagan más lentamente y presentan un bajo factor de seguridad, por lo que su conducción puede bloquearse, facilitando la aparición de arritmias por reentrada (véase más adelante). La duración del período refractario cardíaco varía con la del potencial de acción, de tal forma que, en condiciones fisiológicas, la recuperación de la excitabilidad cardíaca tiene lugar cuando la célula se repolariza por completo. Los fármacos que prolongan el tiempo que los canales de Na+ tardan en reactivarse (antiarrítmicos, anestésicos locales) incrementan la duración del período refractario más allá de lo que dura el potencial de acción cardíaco. La isquemia cardíaca, al despolarizar el Em y prolongar la reactivación de la INa, también aumenta la duración del período refractario cardíaco. La duración del período refractario determina la máxima frecuencia de estimulación auricular y ventricular. La duración del potencial de acción y del período refractario en las células auriculares es menor que en las ventriculares (150 frente a 250-300 ms), y en éstas es menor que en las células de Purkinje, lo que explica que la frecuencia de los ritmos supraventriculares rápidos (p. ej., flúter o aleteo y fibrilación auriculares) sea mayor que la de los ventriculares. El período refractario, además, protege al corazón de las frecuencias muy rápidas, que impiden una relajación completa del músculo cardíaco y que, al disminuir la distensibilidad ventricular, pueden interferir con su función de bomba. Finalmente, y puesto que la duración del período refractario (170-330 ms) excede al tiempo de propagación del impulso cardíaco, un impulso que parte del nodo SA sólo podrá estimular una única vez al miocardio. Es decir, en condiciones fisiológicas la larga duración del período refractario cardíaco impide la reentrada del impulso cardíaco. En los nodos SA y AV el período refractario excede la duración del potencial de acción, por lo que no es posible generar un nuevo potencial de acción propagado hasta incluso después de que la célula se ha repolarizado por completo. Este fenómeno, denominado refractariedad posrepolarización, es debido a que los canales de Ca2+ tardan 100-300 ms en reactivarse. El hecho de que el nodo AV presente un período refractario prolongado representa un mecanismo protector que en presencia de ritmos supraventriculares rápidos impide que aparezcan aumentos muy marcados de la frecuencia ventricular, que podrían poner en peligro la función de la bomba ventricular. En pacientes con fibrilación auricular, las aurículas laten a frecuencias superiores a 330/min, mientras que los ventrículos laten a una frecuencia inferior a 160/min, ya que se produce un bloqueo 2:1 ó 3:1 de la conducción a través del nodo AV.

AUTOMATISMO CARDÍACO

Aunque todas las células cardíacas son excitables, algunas estructuras cardíacas presentan la propiedad de ser automáticas, es decir, son capaces de autoexcitarse y generar potenciales de acción propagados y respuestas contráctiles de forma espontánea. En condiciones fisiológicas presentan actividad automática el nodo SA, algunas estructuras del nodo AV, el sistema de His-Purkinje y ciertas estructuras especializadas de la aurícula localizadas alrededor del seno coronario y de los tractos internodales.  el impulso cardíaco se genera en el nodo SA, una pequeña estructura (3 5 mm) que se localiza en la confluencia de la vena cava superior con la orejuela derecha y la pared lateral de la aurícula derecha. Las células del nodo SA son más pequeñas (3-5 m) que las musculares auriculares circundantes (10-15 m). La frecuencia de disparo de las células del nodo SA es más rápida (60-90 latidos/min) que la de los restantes marcapasos (15 latidos/min), por lo que, en condiciones fisioló- gicas los impulsos que parten de esta estructura despolarizan a las restantes células marcapaso antes de que puedan generar sus propios potenciales de acción. Por tanto, el nodo SA actúa como marcapaso cardíaco y los restantes grupos de células automáticas como marcapasos ectópicos. Los nodos SA y AV presentan un potencial diastólico máximo de unos –65 mV. A este nivel de Em los canales de Na+ se encuentran preferentemente en estado inactivo (no conductor), por lo que la fase 0 o de rápida despolarización sólo puede ser consecuencia de la activación de la ICa, que fluye a través de los canales L cardíacos, es decir, son células que generan potenciales de acción Ca2+-dependientes. Por el contrario, las células automáticas del sistema His-Purkinje presentan un potencial diastólico máximo entre –80 y –90 mV, al cual los canales de Na+ se encuentran en estado de reposo, es decir, disponibles para activarse. Esta diferencia en el mecanismo iónico responsable del automatismo es importante, ya que implica que los fármacos antiarrítmicos que inhiben la INa (lidocaína, flecainida, propafenona) podrían inhibir el automatismo del sistema de His-Purkinje a dosis a las que no modifican la actividad automática del nodo SA, mientras que los fármacos que bloquean la ICa (verapamilo, diltiazem, dihidropiridinas) serán más selectivos para bloquear el automatismo generado en los nodos SA y AV, pudiendo producir con facilidad bradicardia sinusal. Ya mencionamos que las células automáticas no presentan un Em estable, sino que tras la repolarización aparece una fase 4 de lenta despolarización diastólica que desplaza de forma progresiva el Em hacia valores menos negativos, generándose un nuevo potencial de acción propagado cuando se alcanza el nivel del potencial umbral. Por tanto, tres son los factores que van a determinar la frecuencia de disparo de una célula automática: la pendiente de la fase 4, el nivel del potencial diastólico máximo al final de la repolarización, y el nivel del potencial umbral. Cualquier situación que aumente la pendiente de la fase 4 (hipopotasemia, isquemia, estimulación -adrenérgica, digoxina, acidosis, distensión de la pared ventricular), despolarice el potencial de membrana (isquemia, hiperpotasemia) o hiperpolarice el potencial umbral, acelerará la frecuencia de disparo de una célula automática. Por el contrario, cuando se reduce la pendiente de la fase 4 (fármacos antiarrítmicos, maniobras vagales), el potencial diastólico máximo se hiperpolariza (maniobras vagales, adenosina) o el potencial umbral se desplaza hacia valores menos negativos, prolongarán el intervalo entre los potenciales de acción y disminuirán la frecuencia cardíaca. Una característica de las células automáticas Na+- dependientes es que cuando se las estimula a una frecuencia superior a la suya, tanto la inclinación de la fase 4 como la frecuencia de disparo disminuyen. Esta característica se denomina supresión por sobreestimulación (overdrive suppression). En condiciones fisiológicas las células del nodo SA presentan una frecuencia mayor a las de las restantes células automáticas, actuando, por tanto, como el marcapaso que determina la frecuencia cardíaca; las restantes células automáticas actúan como marcapasos latentes o subsidiarios. Debido a su mayor frecuencia de disparo (60-80 latidos/min), los impulsos generados en el nodo SA alcanzan y despolarizan las restantes células automáticas, antes de que su fase lenta de despolarización diastólica haya alcanzado el nivel del potencial umbral, e impiden que despolaricen al miocardio.

Potencial de acción cardíaco

Si aplicamos pulsos de corriente a una célula cardíaca en reposo observamos que al incrementar su intensidad aumenta la amplitud de la respuesta generada, y si ésta alcanza un determinado nivel, denominado potencial umbral, se produce una respuesta regenerativa a la que denominamos potencial de acción cardíaco. Cuando la amplitud de la respuesta producida no alcanza el potencial umbral, se genera una respuesta local no propagada. En el potencial de acción cardíaco distinguimos 5 fases . Al igual que en las fibras nerviosas o musculares esqueléticas, el potencial de acción cardíaco se inicia por una fase 0 de rápida despolarización, que en 0.5- 2 ms desplaza el Em hasta +20 o +30 mV. A diferencia de lo que ocurre en las células nerviosas o musculares esqueléticas, en las células cardíacas el proceso de repolarización es más lento, lo que explica por qué la duración del potencial de acción cardíaco es más prolongado que el de las células nerviosas o musculares esqueléticas (170-330 ms en vez de 1-10 ms). En la repolarización distinguimos 
3 fases: una fase 1 inicial rápida que confiere una morfología de pico al potencial de acción en algunas células cardíacas (p. ej., las de Purkinje), que se continúa con una fase 
2 o meseta en la que disminuye marcadamente la velocidad de repolarización, y finalmente una fase
 3, durante la cual la repolarización se acelera de nuevo y el Em vuelve a alcanzar los valores previos a la despolarización celular. El intervalo diastólico comprendido hasta el siguiente potencial de acción recibe el nombre de fase
 4. En las células no automáticas la fase 4 es isoeléctrica, mientras que en las automáticas, durante la fase 4 del Em las células se despolarizan lentamente hacia el potencial umbral, es decir, presentan una fase 4 de lenta despolarización diastólica , siguiendo la secuencia normal de activación del corazón. Puede verse que existen marcadas diferencias en la morfología; así, los potenciales de acción de las células de los nodos SA y AV son de menor amplitud que los de las células auriculares y ventriculares. Además, la duración del potencial de acción es mayor en las células ventriculares que en las auriculares, lo que constituye un mecanismo protector, que evita que estas puedan responder a frecuencias auriculares muy rápidas o tras la estimulación prematura del corazón . Estas diferencias en la morfología del potencial de acción son consecuencia de las variaciones en la densidad de canales que se expresan en la membrana. También puede verse cómo las fases del potencial de acción cardíaco se corresponden con el electrocardiograma (ECG) de superficie . 
La fase 0 de despolarización del potencial de acción auricular se corresponde con la onda P y la del músculo ventricular con el complejo QRS del ECG. El intervalo PR refleja la velocidad de conducción a través del nodo AV, el complejo QRS la velocidad de conducción intraventricular, y el intervalo QT la duración de la repolarización ventricular, es decir, la duración del potencial de acción ventricular.

corazón

Todas las células cardíacas son excitables, es decir, son capaces de responder a estímulos externos (químicosneurotransmisores, mecánicos, térmicos o eléctricos) generando una respuesta eléctrica, el potencial de acción cardíaco, a la que va acoplada la correspondiente respuesta contráctil. Ésta es la base de la implantación de marcapasos o de sistemas de estimulación eléctrica programada

No todos los estímulos fisiológicos o experimentales tienen igual capacidad para generar un potencial de acción, siendo preciso que para ello posean una mínima intensidad, a la que denominamos umbral de excitabilidad, cuyo valor varía en los distintos tejidos cardíacos y en un mismo tejido, dependiendo de la frecuencia de estimulación o de la concentración de neurotransmisores, de fármacos o de iones.

Potencial de reposo
 A ambos lados de la membrana lipoproteica que separa los medios intra y extracelular existe una diferencia de potencial, a la que denominamos potencial de membrana (Em). Cuando introducimos un microelectrodo se puede medir el valor de este Em, que oscila entre –80 y –90 mV en las células musculares auriculares y ventriculares y en el sistema de His-Purkinje, y entre –65 y –50 en las células de los nodos SA y AV. El valor del Em se mantiene constante durante largos períodos de tiempo si la célula no se estimula; el Em de estas células cuando no son excitadas recibe el nombre de potencial de reposo. El potencial de reposo está determinado por el equilibrio entre la capacidad de distintos iones para atravesar la membrana a favor de su gradiente electroquímico (permeabilidad de la membrana para cada ion) y los sistemas de transporte que movilizan estos iones en contra de su gradiente de concentración (p. ej., la bomba Na+-K+). En una célula en reposo, la concentración intracelular de potasio ([K+]i) es 30 veces superior a la que existe en el medio extracelular (150 frente a 4-5 mEq/L), lo que facilita la salida de este catión a favor de su gradiente de concentración, generando una corriente de salida de K+ que hace más negativo (hiperpolariza) el Em. Como consecuencia, se produce un aumento de cargas negativas dentro de la célula que no puede compensarse por la salida simultánea de aniones, ya que su tamaño no les permite atravesar la membrana; ello a su vez facilita la entrada de cargas positivas desde el medio extracelular hacia el interior celular, que es electronegativo. Se alcanzará un Em al cual el gradiente de concentración, que facilita la salida de K+ desde el medio donde está más concentrado (intracelular) al menos concentrado (extracelular), será igual al gradiente eléctrico, que tiende a meter iones K+ en el interior celular electronegativo. Este nivel de Em al que el flujo neto pasivo de K+ a través de la membrana es nulo recibe el nombre de potencial de equilibrio para el K+ (Ek). Su valor viene dado por la ecuación de Nernst:

EK = (RT/FZ). ln[K+]0 / [K+]i ) = 26.6 ln (4/150) = –96.6 mV

donde R es la constante de los gases, T la temperatura absoluta, F la constante de Faraday y [K+]i y [K+]o las concentraciones intra y extracelulares de K+. Si la membrana cardíaca fuera sólo permeable al K+, el valor del Em debería alcanzar valores similares a los del EK. Ello es debido a que la membrana no es exclusivamente permeable al K+, sino que además es permeable al Na+. En fibras de Purkinje, los valores de la [Na+]o y de la [Na+]i son de 150 y 10 mM, respectivamente, por lo que existiría un gradiente electroquímico que facilita la entrada de Na+, generándose una corriente iónica que tiende a desplazar en Em hacia valores más positivos (despolarización). La corriente de entrada de Na+ ha sido incorporada en las ecuaciones que definen el potencial de reposo en células permeables al K+ y al Na+

Em = 61.5 log [K+]0 + PNa / PK[Na+]0/ [K+]i + PNa / PK[Na+]i

donde PNa/PK es el cociente de permeabilidad para el Na+ y el K+, respectivamente, que en condiciones normales suele alcanzar un valor de 0.015. Sin embargo, el valor del cociente PNa/PK no es uniforme en todas las células cardíacas. Así, las células de los nodos SA y AV presentan
un potencial de reposo que es unos 30 mV menos negativo que el de las fibras de Purkinje, lo que quizá refleje un aumento del cociente PNa/PK en las células nodales. Los gradientes de Na+ y K+ a ambos lados de la membrana cardíaca se mantienen gracias a la activación de una ATPasa Na+/K+-dependiente (bomba de Na+), que intercambia la salida de 3 iones de Na+ por la entrada de 2 iones de K+. Como consecuencia, se genera una corriente de salida de cargas positivas que facilita la repolarización y ayuda a mantener la negatividad celular. Por el contrario, la inhibición de esta ATPasa (p. ej., por digitálicos) tiende a despolarizar el Em. El transporte de Ca2+ se realiza a través de una ATPasa de membrana (PMCA) y del intercambiador Na+-Ca2+, que utiliza la energía derivada del gradiente electroquímico de Na+

relación medico paciente

Cual es su esencia? Es una balanza con dos platillos en el que cada cual debe tener un peso especifico distinto: por un lado el médico con la debida preparación profesional, que deberá ser capaz de descubrir en cada paciente - independientemente de su condición económica o social. de su raza, nacionalidad o color, de su partido político o credo religioso, de su edad o sexo - la grandeza de su dignidad como persona, la cual está dada por estar creada a semejanza de Dios, que a todos nos ha hechos hijos suyos, condición por la que la persona merece toda la delicadeza, respeto y amor, que a su vez suscita a tratarlo unas veces como hijo, otras como hermano menor, otras como hermano gemelo, y siempre con el trato que se le da a un verdadero amigo, añadiendo el necesario ingrediente de la responsabilidad. Por otra parte, del paciente siempre se espera que colabore con sinceridad, fidelidad, confianza y responsabilidad

Relación Medico paciente.
 Intentar establecer una relación entre medico paciente se hace bajo diferentes áreas entre ellas: Filosofía, Sociología, Psicología y Psiquiatría. 

pedo-filia

El delito sexual tal vez sea la modalidad delictiva más rechazada en nuestra sociedad. Víctimas indefensas o débiles como niños o mujeres sufren una vulnerabilidad y transgresión del aspecto más íntimo de la persona, llevándola hasta la tortura psicológica más despreciable e inmerecida.

Datos epidemiológicos: agresiones sexuales a niños (pedofilia y pederastia)

Resulta alarmante cuando profesionales se refieren a datos epidemiológicos. En el año 1998, en Valencia se realizó un seminario europeo “Rompiendo Silencios” donde se concluyó que un 23% de niñas y un 15% de niños sufren en España diversos tipos de abusos sexuales; de estos solo el 40% recibe ayuda. Entre los 7 y 13 años es la edad más frecuentada; y entre el 25 y 35% tienen menos de 7 años. Por cada niño menor víctima de abuso sexual, hay 3 niñas víctimas (Vázquez, 2004).
Al igual que con otros muchos problemas, vivimos los abusos y agresiones sexuales como si nunca nos fueran a suceder; ni a nosotros, ni a nuestros cercanos. Pero como indican las estadísticas; el abuso sexual a menores es un acto delictivo que siendo bastante frecuente, queda en su mayoría de veces invisible. Esto quiere decir, que queda sin denunciarse y en ocasiones, sin revelarse a otra/s persona/s.
La relevancia de abordar este tema no solo viene marcada por el acto degradante y humillante, sino por sus consecuencias a corto, medio y largo plazo. Consecuencias variables en cada persona, asimismo como diferencias entre delitos. Hablamos de modalidad (como las tipologías mencionadas en el artículo), duración del hecho o de los hechos, grado de gravedad, la persona que abusa (conocido, familiar, figura de autoridad o confianza, desconocido), vulnerabilidad de la víctima… Una serie de variables que convergen desde el momento de los hechos hasta pasados estos, llevarán a víctimas de abusos muy graves a superarlo o no, así como existiendo casos de abusos leves que quedan interiorizados. 
Así, cada abuso sexual puede causar una serie de traumas sexuales y afectivos que interfieren e interferirán nocivamente a lo largo la vida de la víctima. (En el vídeo adjuntado al final del artículo, podemos acercarnos a entender algunos de los traumas sufridos por las víctimas de abusos sexuales durante la infancia).

Perfil psicopatológico de la personalidad del pedófilo

Aproximación al concepto, características y tipos de actos pedófilos

La pedofilia es una parafilia, donde el adulto siente interés sexual hacia el menor. Actualmente se distinguen dos tipos de pedofilia: primaria y secundaria. Los pedófilos primarios se caracterizan por evitar y/o temer las relaciones sexuales con adultos, así como por una dificultad de interacción con sus iguales a causa de una baja autoestima junto a una marcada ira hacia otros adultos. Los pedófilos secundarios, por el contrario, sí pueden mantener relaciones sexuales con adultos mientras fantasean con niños

Trastorno de pedofilia

  • Durante un período de al menos seis meses, excitación sexual intensa y recurrente derivada de fantasías, deseos sexuales irrerenables o compartimientos que implican la actividad sexual con uno o más niños prepúberes (generalmente menores de 13 años).
  • El individuo ha cumplido estos deseos sexuales irrefrenables, o los deseos irrefrenables o fantasías sexuales causan malestar importante o problemas interpersonales.
  • El individuo tiene como mínimo 16 años y es al menos cinco años mayor que el niño/niños del Criterio A.
  • Nota: No incluir a un individuo al final de la adolescencia que mantiene una relación sexual con otro individuo de 12 o 13 años.
    La pedofilia es crónica desde su inicio.
    Ésta es normalmente iniciada en la pubertad o adolescencia.

    Perfil del pedófilo

    «Según la recopilación de estudios ingleses y americanos realizada por Hollin (1989) los agresores sexuales son varones, las violaciones suelen ser en la propia casa de la víctima, frecuentemente por la noche y durante el fin de semana» (Ortiz-Tallo, et al.; 2002). Garrido, realizó un estudio con agresores sexuales donde concluyó que los delincuentes sexuales presentaban un perfil de entre 26-30 años; no tenían trabajo cualificado; aunque si escolarizados; en su mayoría solteros; y solo habían cometido delitos anteriormente el 20%.
    Los datos estadísticos según el Ministerio de Interior en Diciembre de 1999 revelan que de un 30.661 de hombres encarcelados, 1.440 cumplen pena por la comisión de delitos sexuales. Esto es, un 4,6% del total de hombres eran a causa de un delito sexual. Sin embargo, tan solo 25 mujeres de las 2.742 encarceladas lo estaban por delito sexual; resultando así un 0,91% del total de mujeres. Este escaso número de mujeres, es lo que lleva a las numerosas investigaciones sobre delitos sexuales (como en los estudios sobre la pedofilia), a centrarse en muestras con hombres. (Ortiz-Tallo, et al.; 2002). Según Vázquez (2005), las mujeres como agresoras sexuales de niños son anecdóticas; siendo implicadas en estos delitos como cómplices a modo de sumisión por parte de otros. Sumadamente, por cada 1 niño menor víctima de abuso sexual, hay 3 niñas víctimas (Vázquez, 2004).
    Aunque cada pedófilo tiene sus preferencias respecto a las características de los niños (edades, género), su curso es crónico desde su inicio; siendo este inicio normalmente en la pubertad y adolescencia del pedófilo (aunque algunos pueden desarrollarla en etapas más adultas). Vázquez (2005), afirma que cada vez son más los adolescentes agresores de niños menores.
    Otra marcada característica del pedófilo son sus distorsiones cognitivas o pensamientos erróneos dedicados a justificar su comportamiento desviado. La cronicidad del trastorno, junto a las distorsiones cognitivas y la relación interpersonal establecida entre el niño y el pedófilo (manipulativa y destructiva; consecuentemente carente de resistencia) suele llevar a un abuso sexual del menor, insidiosa y progresiva. Con progresiva, nos referimos a que, lamentablemente, este tipo de abusos se prolongan en el tiempo, aumentando la gravedad de los hechos progresivamente. Al contrario de lo que pueda suceder en agresiones sexuales a adultos, donde suele darse de forma puntual, limitada en tiempo y entre desconocidos. El pedófilo suele conocer a su víctima menor y abusa de esa relación (son pocos los casos de abuso a menores desconocidos).

    Las acciones del pedófilo

    Tipos de actos sexuales a niños realizados por pedófilos:
    • Exhibicionismo (excitación sexual intensa derivada de la exposición de los genitales por parte del pedófilo al niño. Esta es una de las parafílias más frecuentes).
    • Voyeurismo (el pedófilo encuentra excitación sexual intensa al observar al niño desnudo o desnudándose, sin su consentimiento o conocimiento. Durante esta también se puede dar la masturbación).
    • Caricias.
    • Frotteruismo (el pedófilo encuentra placer sexual en tocar o frotar sus genitales contra el niño).
    • Masturbación en presencia de niños.
    • Sexo oral.
    • Penetración anal o vaginal (por parte del pedófilo hacia el niño/a).
    Los pedófilos, al contrario de los abusadores o agresores sexuales de víctimas mayores de edad, no usan la fuerza. Los pedófilos siguen una serie de estrategias de manipulaciones psíquicas hacia el niño/a logrando así que este se implique en la actividad sexual. Estas estrategias pueden manifestarse a través de la atracción: simpatía, comprar o regalar cosas, mostrar excesivo interés o mostrar comportamientos infantiles. Muchos de ellos justifican estos actos dando valor educativo o de placer hacia los niños, es decir, plantean que el niño necesita de este aprendizaje o placer por su propio bien. Esto deja en evidencia el carácter manipulativo de los pedófilos.

    1. Estudio clínico: Perfil psicológico de delincuentes sexuales

    Ortiz-Tallo, et al. (2002), defienden que los delincuentes sexuales con adultos parten de una naturaleza distinta a los pedófilos. En la delincuencia sexual con adultos suele darse la violación a través de la intimidación o fuerza (al contrario de lo que suele suceder con niños). Por lo que con adultos, existe una mayor violencia; esperándose así un comportamiento y personalidad semejante a personas encarceladas por agresiones y robos con intimidación en los agresores sexuales de adultos.
    En un estudio comparativo entre tres grupos: delitos sexuales a adultos, delitos sexuales a niños y delitos no sexuales, Ortiz-Tallo et al. (2002) hallaron los siguientes resultados:
    • El grupo de delincuentes no sexuales presentaba un perfil de personalidad más alterada y de mayor gravedad, junto a un mayor consumo de alcohol y drogas que los delincuentes sexuales (de mayores y de menores).
    • El grupo de delincuentes sexuales de menores se mostró como el grupo con menos alteraciones de la personalidad. Puntuando más alto en los rasgos de personalidad dependientes, fóbicos y compulsivos.
    Los pedófilos presentan menos alteraciones de personalidad y rasgos de personalidad menos graves que otros tipos de delincuentes sexuales.

    La personalidad del pedófilo

    Ortiz-Tallo et al. (2002), describen a los pedófilos como personas con dificultades de interacción; que buscan la aceptación social; sienten miedo al rechazo, el menosprecio y/o la humillación de sus iguales; con dificultades para asumir roles maduros e independientes y responsabilidades. 
    Son personas con más bien poca capacidad para conseguir empatizar e intimidar; incapaces o con gran dificultad para establecer una relación emocional con adultos, llevándoles a recurrir a la relación emocional y sexual desviada con menores. Por lo que las estrategias terapéuticas deberían encaminarse a mejorar sus habilidades sociales así como disminuir su retraimiento social y temor a las relaciones interpersonales entre iguales.

    2. Revisión bibliográfica: Patología de la personalidad en pedófilos

    Aunque son escasos los estudios en este campo y sumadamente poco concluyentes sus resultados, Becerra-García (2013) expone en una revisión actual de los rasgos y trastornos de personalidad predominantes entre pedófilos según las diferentes pruebas clínicas. En resumen, podemos destacar en la personalidad del pedófilo respecto a grupos controles:
    • Mayores puntuaciones en la escalas de incoherencia, desviación psicopática, paranoia, esquizofrenia y obsesividad. Utilizando unos mecanismos de afrontamiento menos maduros.
    • Puntuaciones más altas en obsesión y disfunción sexual. Los pedófilos que habían sido víctimas sexuales en la infancia mostraban niveles más altos de hostililidad, disfunción sexual, malestar personal y menor empatía hacia sus víctimas que los que no habían sufrido abuso sexual.
    • Se relaciona el sufrimiento emocional de los pedófilos con sus niveles altos de neuroticismo y las distorsiones cognitivas sobre la sexualidad infantil con sus rasgos obsesivos.
    • Mayores niveles de neuroticismo y rigidez. Pero menos comportamiento impulsivo y capacidad para satisfacer sus necesidades que los delincuentes violentos.
    • Mayores puntuaciones en escalas de personalidad borderline, histriónico y en especial, en la obsesivo-compulsivo.
    • Presentan un estilo de apego menos seguro (estilo evitativo y ansioso-ambivalente), que el grupo control.
    • Los autores encuentran una patología de personalidad marcada en los pedófilos: falta de asertividadsociopatía elevada y distorsiones cognitivas; y hallan desviaciones en su conducta sexual: alteraciones de excitación, discriminación, deseo e inhibición en el pensamiento.

CONCIENCIA POR UN MÉXICO SIN COVID-19

 hoy quiero aprovechar este post para iniciar a hacer conciencia. desde el punto de vista médico, como estudiante de medicina a punto de ing...